Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas A. Arenberg is active.

Publication


Featured researches published by Douglas A. Arenberg.


Journal of Biological Chemistry | 1995

The Functional Role of the ELR Motif in CXC Chemokine-mediated Angiogenesis

Robert M. Strieter; Peter J. Polverini; Steven L. Kunkel; Douglas A. Arenberg; Marie D. Burdick; James Kasper; Judith Dzuiba; Jo Van Damme; Alfred Walz; David Marriott; Sham Yuen Chan; Steven Roczniak; Armen B. Shanafelt

In this study, we demonstrate that the CXC family of chemokines displays disparate angiogenic activity depending upon the presence or absence of the ELR motif. CXC chemokines containing the ELR motif (ELR-CXC chemokines) were found to be potent angiogenic factors, inducing both in vitro endothelial chemotaxis and in vivo corneal neovascularization. In contrast, the CXC chemokines lacking the ELR motif, platelet factor 4, interferon -inducible protein 10, and monokine induced by -interferon, not only failed to induce significant in vitro endothelial cell chemotaxis or in vivo corneal neovacularization but were found to be potent angiostatic factors in the presence of either ELR-CXC chemokines or the unrelated angiogenic factor, basic fibroblast growth factor. Additionally, mutant interleukin-8 proteins lacking the ELR motif demonstrated potent angiostatic effects in the presence of either ELR-CXC chemokines or basic fibroblast growth factor. In contrast, a mutant of monokine induced by -interferon containing the ELR motif was found to induce in vivo angiogenic activity. These findings suggest a functional role of the ELR motif in determining the angiogenic or angiostatic potential of CXC chemokines, supporting the hypothesis that the net biological balance between angiogenic and angiostatic CXC chemokines may play an important role in regulating overall angiogenesis.


Journal of Leukocyte Biology | 2000

CXC chemokines in angiogenesis

John A. Belperio; Michael P. Keane; Douglas A. Arenberg; Christina L. Addison; Jan E. Ehlert; Marie D. Burdick; Robert M. Strieter

A variety of factors have been identified that regulate angiogenesis, including the CXC chemokine family. The CXC chemokines are a unique family of cytokines for their ability to behave in a disparate manner in the regulation of angiogenesis. CXC chemokines have four highly conserved cysteine amino acid residues, with the first two cysteine amino acid residues separated by one non‐conserved amino acid residue (i.e., CXC). A second structural domain within this family determines their angiogenic potential. The NH2 terminus of the majority of the CXC chemokines contains three amino acid residues (Glu‐Leu‐Arg: the ELR motif), which precedes the first cysteine amino acid residue of the primary structure of these cytokines. Members that contain the ELR motif (ELR+) are potent promoters of angiogenesis. In contrast, members that are inducible by interferons and lack the ELR motif (ELR−) are potent inhibitors of angiogenesis. This difference in angiogenic activity may impact on the pathogenesis of a variety of disorders.


Journal of Clinical Investigation | 1996

Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice.

Douglas A. Arenberg; Steven L. Kunkel; Peter J. Polverini; Mary C. Glass; Marie D. Burdick; Robert M. Strieter

The salient feature of solid tumor growth is the strict dependence on local angiogenesis. We have previously demonstrated that IL-8 is an angiogenic factor present in freshly isolated specimens of human non-small cell lung cancer (NSCLC). Using a model of human NSCLC tumorigenesis in SCID mice, we now report that IL-8 acts as a promoter of human NSCLC tumor growth through its angiogenic properties. Passive immunization with neutralizing antibodies to IL-8 resulted in more than 40% reduction in tumor size and was associated with a decline in tumor-associated vascular density and angiogenic activity. IL-8 did not act as an autocrine growth factor for NSCLC proliferation. The reduction in primary tumor size in response to neutralizing antibodies to IL-8 was also accompanied by a trend toward a decrease in spontaneous metastasis to the lung. These data support the notion that IL-8 plays a significant role in mediating angiogenic activity during tumorigenesis of human NSCLC, thereby offering a potential target for immunotherapy against solid tumors.


Journal of Clinical Investigation | 1998

Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer

Douglas A. Arenberg; Michael P. Keane; Bruno DiGiovine; Steven L. Kunkel; Susan B. Morris; Ying Ying Xue; Marie D. Burdick; Mary C. Glass; Mark D. Iannettoni; Robert M. Strieter

We report here the role of the CXC chemokine, epithelial neutrophil activating peptide (ENA-78), as an angiogenic factor in human non-small cell lung cancer (NSCLC). In freshly isolated human specimens of NSCLC, elevated levels of ENA-78 were found that strongly correlated with the vascularity of the tumors. In a SCID mouse model of human NSCLC tumorigenesis, expression of ENA-78 in developing tumors correlated with tumor growth in two different NSCLC cell lines. Furthermore, passive immunization of NSCLC tumor-bearing mice with neutralizing anti-ENA-78 antibodies reduced tumor growth, tumor vascularity, and spontaneous metastases, while having no effect on the proliferation of NSCLC cells either in vitro or in vivo. These findings suggest that ENA-78 is an important angiogenic factor in human NSCLC.


Shock | 1995

The Role Of Cxc Chemokines As Regulators Of Angiogenesis

Robert M. Strieter; Peter J. Polverini; Douglas A. Arenberg; Steven L. Kunkel

The regulation of angiogenesis is fundamental to a variety of physiological and pathological processes. Although a number of factors have been identified that induce neovascularization, it is becoming increasingly apparent that endogenous angiostatic factors may play an important role in the regulation of angiogenesis during wound repair, chronic inflammation, and growth of solid tumors. In this review, we demonstrate that the CXC chemokine family of cytokines display disparate angiogenic activity depending upon the presence or absence of the ELR motif, a structural amino acid motif previously found to be important in receptor ligand binding on neutrophils. CXC chemokines containing the ELR motif are potent angiogenic factors, inducing both in vitro endothelial chemotaxis and in vivo corneal neovascularization. In contrast, the CXC chemokines that lack the ELR motif, PF4, IP-10, and MIG, not only fail to induce significant in vitro endothelial cell chemotaxis or in vivo corneal neovascularization, but are found to be potent angiostatic factors in the presence of CXC chemokines containing the ELR motif. These findings suggest that the CXC chemokine family can display disparate angiogenic activity that depends upon the presence or absence of the ELR motif. Furthermore, these studies support the notion that the net biological balance in the magnitude of expression of angiogenic and angiostatic CXC chemokines at either the site of wound repair or during tumorigenesis may be important in the regulation of net angiogenesis.


Oncogene | 2004

Peroxisome proliferator-activated receptor- γ activation inhibits tumor progression in non-small-cell lung cancer

Venkateshwar G. Keshamouni; Raju C. Reddy; Douglas A. Arenberg; Binju Joel; Victor J. Thannickal; Gregory P. Kalemkerian; Theodore J. Standiford

The peroxisome proliferator-activated receptor-gamma (PPAR-γ) is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors and a crucial regulator of cellular differentiation. Differentiation-inducing and antiproliferative effects of PPAR-γ suggest that PPAR-γ agonists might be useful as effective anticancer agents. Few studies have examined the efficacy of these agonists in animal models of tumorigenesis, and their mechanism(s) of action are still not clear. Our studies indicate higher PPAR-γ expression in primary tumors from non-small-cell lung cancer (NSCLC) patients when compared to normal surrounding tissue. The expression of PPAR-γ was also observed in several NSCLC lines. The treatment of lung adenocarcinoma cells (A549) with troglitazone (Tro), a PPAR-γ ligand, enhanced PPAR-γ transcriptional activity and induced a dose-dependent inhibition of A549 cell growth. The observed growth arrest was predominantly due to the inhibition of cell proliferation without significant induction of apoptosis. Cell cycle analysis of Tro-treated cells revealed a cell cycle arrest at G0/G1 with concomitant downregulation of G0/G1 cyclins D and E. In addition, Tro treatment stimulated sustained Erk1/2 activation in A549 cells, suggesting the activation of a differentiation-inducing pathway. Furthermore, treatment of A549 tumor-bearing SCID mice with Tro or Pio inhibited primary tumor growth by 66.7% and significantly inhibited the number of spontaneous lung metastatic lesions. Collectively, our data demonstrate that activation of PPAR-γ impedes lung tumor progression and suggest that PPAR-γ ligands may serve as potential therapeutic agents for NSCLC.


Chest | 2013

Treatment of stage III non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines.

Nithya Ramnath; Thomas J. Dilling; Loren J. Harris; Anthony W. Kim; Gaetane Michaud; Alex Balekian; Rebecca L. Diekemper; Frank C. Detterbeck; Douglas A. Arenberg

OBJECTIVES Stage III non-small cell lung cancer (NSCLC) describes a heterogeneous population with disease presentation ranging from apparently resectable tumors with occult microscopic nodal metastases to unresectable, bulky nodal disease. This review updates the published clinical trials since the last American College of Chest Physicians guidelines to make treatment recommendations for this controversial subset of patients. METHODS Systematic searches were conducted through MEDLINE, Embase, and the Cochrane Database for Systematic Review up to December 2011, focusing primarily on randomized trials, selected meta-analyses, practice guidelines, and reviews. RESULTS For individuals with stage IIIA or IIIB disease, good performance scores, and minimal weight loss, treatment with combined chemoradiotherapy results in better survival than radiotherapy alone. Consolidation chemotherapy or targeted therapy following definitive chemoradiation for stage IIIA is not supported. Neoadjuvant therapy followed by surgery is neither clearly better nor clearly worse than definitive chemoradiation. Most of the arguments made regarding patient selection for neoadjuvant therapy and surgical resection provide evidence for better prognosis but not for a beneficial impact of this treatment strategy; however, weak comparative data suggest a possible role if only lobectomy is needed in a center with a low perioperative mortality rate. The evidence supports routine platinum-based adjuvant chemotherapy following complete resection of stage IIIA lung cancer encountered unexpectedly at surgery. Postoperative radiotherapy improves local control without improving survival. CONCLUSIONS Multimodality therapy is preferable in most subsets of patients with stage III lung cancer. Variability in the patients included in randomized trials limits the ability to combine results across studies and thus limits the strength of recommendations in many scenarios. Future trials are needed to investigate the roles of individualized chemotherapy, surgery in particular cohorts or settings, prophylactic cranial radiation, and adaptive radiation.


American Journal of Pathology | 1999

Distinct CXC chemokines mediate tumorigenicity of prostate cancer cells.

Bethany B. Moore; Douglas A. Arenberg; Kevin Stoy; Tamara Morgan; Christina L. Addison; Susan B. Morris; Mary C. Glass; Carol A. Wilke; Ying Ying Xue; Stephanie Sitterding; Steven L. Kunkel; Marie D. Burdick; Robert M. Strieter

Prostate cancer is the second leading cause of malignancy-related mortality in males in the United States. As a solid tumor, clinically significant tumor growth and metastasis are dependent on nutrients and oxygen supplied by tumor-associated neovasculature. As such, there is a selective tumorigenic advantage for those neoplasms that can produce angiogenic mediators. We show here that human prostate cancer cell lines can constitutively produce angiogenic CXC chemokines. Tumorigenesis of PC-3 prostate cancer cells was shown to be attributable, in part, to the production of the angiogenic CXC chemokine, interleukin (IL)-8. Neutralizing antisera to IL-8 inhibits PC-3 tumor growth in a human prostate cancer/SCID mouse model. Furthermore, angiogenic activity in PC-3 tumor homogenates was attributable to IL-8. In contrast, the Du145 prostate cancer cell line uses a different angiogenic CXC chemokine, GRO-alpha, to mediate tumorigenicity. Neutralizing antisera to GRO-alpha but not IL-8 reduced tumor growth in vivo and reduced the angiogenic activity in tumor homogenates. Thus, prostate cancer cell lines can use distinct CXC chemokines to mediate their tumorigenicity.


Journal of Leukocyte Biology | 1997

The role of CXC chemokines in the regulation of angiogenesis in non-small cell lung cancer.

Douglas A. Arenberg; Peter J. Polverini; Steven L. Kunkel; Armen B. Shanafelt; Joseph Hesselgesser; Richard Horuk; Robert M. Strieter

Angiogenesis is a critical component of tumor biology. In recent years newer techniques of cell and molecular biology have led to important advances in our understanding of this process. The regulation of angiogenesis depends on a balance between the activity of local factors that promote (angiogenic factors) or inhibit (angiostatic factors) neovascularization. Nowhere is this paradigm of a balance more apparent than in the study of tumor‐associated angiogenesis. Tumors promote angiogenesis through a combination of overexpression of angiogenic factors and local inhibition of angiostatic factors. This strategy leads to an angiogenic environment that promotes tumor growth and metastases. Our laboratory has focused studies on the role of the CXC chemokine family in the regulation of angiogenesis by non‐small cell lung cancer (NSCLC). In this article, we review our findings that the CXC chemokine family is composed of members that are either angiogenic or angiostatic. We have found that in NSCLC an imbalance exists in the expression of these factors that favors tumor‐derived angiogenesis, and therefore tumor growth and metastases. Furthermore, when this imbalance is corrected to reduce the presence of angiogenic factors or increase the presence of angiostatic factors, tumor growth and metastases are reduced. J. Leukoc. Biol.62: 554–562; 1997.


Human Gene Therapy | 2000

The CXC chemokine, monokine induced by interferon-gamma, inhibits non-small cell lung carcinoma tumor growth and metastasis.

Christina L. Addison; Douglas A. Arenberg; Susan B. Morris; Ying Ying Xue; Marie D. Burdick; Michael S. Mulligan; Mark D. Iannettoni; Robert M. Strieter

Angiogenesis is an absolute requirement for tumor growth beyond 2 mm3 in size. The balance in expression between opposing angiogenic and angiostatic factors controls the angiogenic process. The CXC chemokines are a group of chemotactic cytokines that possess disparate activity in the regulation of angiogenesis. Non-small cell lung carcinoma (NSCLC) has an imbalance in expression of ELR+ (angiogenic) compared with ELR- (angiostatic) CXC chemokines that favors angiogenesis and progressive tumor growth. We found that the level of the ELR- CXC chemokine MIG (monokine induced by interferon gamma) in human specimens of NSCLC was not significantly different from that found in normal lung tissue. These results suggested that the increased expression of ELR+ CXC chemokines found in these tumor samples is not counterregulated by a concomitant increase in the expression of the angiostatic ELR-CXC chemokine MIG. This would result in an even more profound imbalance in the expression of regulatory factors of angiogenesis that would favor neovascularization. We hypothesized that MIG might be an endogenous inhibitor of NSCLC tumor growth in vivo and that reconstituion of MIG in the tumor microenvironment would result in the inhibition of tumor growth and metastasis. In support of this hypothesis, we demonstrate here that overexpression of the ELR-CXC chemokine MIG, by three different strategies including gene transfer, results in the inhibition of NSCLC tumor growth and metastasis via a decrease in tumor-derived vessel density. These findings support the importance of the ELR- CXC chemokine MIG in inhibiting NSCLC tumor growth by attenuation of tumor-derived angiogenesis. Furthermore, these findings demonstrate the potential of gene therapy as an alternative means to deliver and overexpress a potent angiostatic CXC chemokine.

Collaboration


Dive into the Douglas A. Arenberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge