Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine A. Picut is active.

Publication


Featured researches published by Catherine A. Picut.


Toxicologic Pathology | 2012

Immune Functioning in Non lymphoid Organs: The Liver

George A. Parker; Catherine A. Picut

The liver is the primary hematopoietic organ of the mammalian body during the fetal stage. The postnatal liver retains immunologically important functions and contains a substantial population of immunologically active cells, including T and B lymphocytes, Kupffer cells, liver-adapted natural killer (NK) cells (pit cells), natural killer cells expressing T cell receptor (NKT cells), stellate cells, and dendritic cells. The liver is the major site of production of the acute phase proteins that are associated with acute inflammatory reactions. Kupffer cells have an important role in the nonspecific phagocytosis that comprises a major component of the barrier to invasion of pathogenic organisms from the intestine. Hepatic NK and NKT cells are important in the nonspecific cell killing that is important in resistance to tumor cell invasion. The liver has a major role in deletion of activated T cells and induction of tolerance to ingested and self-antigens. Disposal of waste molecules generated through inflammatory, immunologic, or general homeostatic processes is accomplished via the action of specific endocytic receptors on sinusoidal endothelial cells of the liver. Age-related changes in sinusoids (pseudocapillarization), autophagy, and functions of various hepatic cell populations result in substantial alterations in many of these immunologically important functions.


Toxicologic Pathology | 2008

Ovarian Follicle Counts Using Proliferating Cell Nuclear Antigen (PCNA) and Semi-Automated Image Analysis in Rats

Catherine A. Picut; Cynthia L. Swanson; Kathryn L. Scully; Vern C. Roseman; Regina F. Parker; Amera K. Remick

Ovarian follicle counting is a method to assess ovarian toxicity in reproductive toxicity studies in rats. Although ovarian follicle counting has been traditionally performed manually on hematoxylin and eosin (H&E)-stained sections, the use of immunohistochemical methods, including human cytochrome P450 1B1 (CYP1B1) and proliferating cell nuclear antigen (PCNA), have been used to enhance the visibility of the primordial and primary follicles to facilitate manual counting. In this study, serial sections from both ovaries from ten 3-month-old female Sprague Dawley rats were stained using routine H&E and immunohistochemistry for PCNA. Counting of primordial and primary follicles was performed manually using these two stains and by semi-automated image analysis of PCNA-stained slides. Although manual counting of PCNA-stained slides is preferable to manual counting of H&E-stained slides, manual counting involves variability between individual counters. Semi-automated image analysis of PCNA-stained slides yields an accurate and consistent count of these primordial/primary follicles and eliminates variability between individual counters.


Toxicologic Pathology | 2015

Postnatal Development of the Testis in the Rat Morphologic Study and Correlation of Morphology to Neuroendocrine Parameters

Catherine A. Picut; Amera K. Remick; Eveline P. C. T. de Rijk; Michelle L. Simons; Donald G. Stump; George A. Parker

Histopathologic examination of the testis from juvenile rats is often necessary to characterize the safety of new drugs for pediatric use and is a required end point in male pubertal development and thyroid function assays. To aid in evaluation and interpretation of the immature testis, the characteristic histologic features of the developing rat testis throughout postnatal development are described and correlated with published neuroendocrine parameter changes. During the neonatal period (postnatal day [PND] 3–7), seminiferous tubules contained gonocytes and mitotically active immature Sertoli cells. Profound proliferation of spermatogonia and continued Sertoli cell proliferation occurred in the early infantile period (PND 8–14). The spermatogonia reached maximum density forming double-layered rosettes with Sertoli cells in the late infantile period (PND 15–20). Leptotene/zygotene spermatocytes appeared centrally as tubular lumina developed, and individual tubules segregated into stages. The juvenile period (PND 21–32) featured a dramatic increase in number and size of pachytene spermatocytes with the formation of round spermatids and loss of “infantile” rosette architecture. In the peri-pubertal period (PND 32–55), stage VII tubules containing step 19 spermatids were visible by PND 46. The presented baseline morphologic and endocrinologic information will help pathologists distinguish delayed development from xenobiotic effects, determine pathogenesis when confronted with nonspecific findings, and identify sensitive time points for targeted study design.


Toxicologic Pathology | 2015

Postnatal Ovary Development in the Rat Morphologic Study and Correlation of Morphology to Neuroendocrine Parameters

Catherine A. Picut; Darlene Dixon; Michelle L. Simons; Donald G. Stump; George A. Parker; Amera K. Remick

Histopathologic examination of the immature ovary is a required end point on juvenile toxicity studies and female pubertal and thyroid function assays. To aid in this evaluation and interpretation of the immature ovary, the characteristic histologic features of rat ovary through the developmental periods are described. These histologic features are correlated with published changes in neuroendocrine profiles as the hypothalamic–pituitary–gonadal axis matures. During the neonatal stage (postnatal day [PND] 0–7), ovarian follicle development is independent of pituitary gonadotropins (luteinizing hormone [LH] or follicle-stimulating hormone [FSH]), and follicles remain preantral. Antral development of “atypical” follicles occurs in the early infantile period (PND 8–14) when the ovary becomes responsive to pituitary gonadotropins. In the late infantile period (PND 15–20), the zona pellucida appears, the hilus forms, and antral follicles mature by losing their “atypical” appearance. The juvenile stage (PND 21–32) is the stage when atresia of medullary follicles occurs corresponding to a nadir in FSH levels. In the peripubertal period (PND 33–37), atresia subsides as FSH levels rebound, and LH begins its bimodal surge pattern leading to ovulation. This report will provide pathologists with baseline morphologic and endocrinologic information to aid in identification and interpretation of xenobiotic effects in the ovary of the prepubertal rat.


Toxicologic Pathology | 2009

The Metrial Gland in the Rat and Its Similarities to Granular Cell Tumors

Catherine A. Picut; Cynthia L. Swanson; Regina F. Parker; Kathryn L. Scully; George A. Parker

Metrial glands are normal structures located in the mesometrial triangle of the pregnant rat uterus from gestational day (GD) 8 through termination of pregnancy. Metrial glands are composed of a dynamic mixed cell population of granulated metrial gland (GMG) cells, endometrial stromal cells, trophoblasts, blood vessels, and fibroblasts. Collections of similar cells may be seen in association with pseudopregnancy and other hormonal disturbances. Granulated metrial gland cells are the hallmark cell of the metrial gland. They are bone-marrow-derived, perforin-positive, natural killer cells that proliferate in the pregnant uterus. Understanding the normal histogenesis of the metrial gland and recognizing the possible existence of GMG cells and a reactive metrial gland in the nonpregnant state are important when examining any uterine lesion that contains granulated cells. This report demonstrates that the cellular composition, morphology, and immunohistochemical staining profile of normal metrial glands are similar to reported granular cell neoplasms in rats and mice. The possibility of a non-neoplastic lesion involving the metrial gland should be considered when proliferative lesions involving granulated cells are observed in the uterus of mice and rats from nonclinical toxicity studies. Positive immunohistochemical staining for perforin and S100 would assist in the classification of such lesions as a reactive metrial gland or decidual reaction.


Toxicologic Pathology | 2015

Histologic Features of Postnatal Development of Immune System Organs in the Sprague-Dawley Rat:

George A. Parker; Catherine A. Picut; Cynthia L. Swanson; Jonathan D. Toot

The immune system of the rat undergoes substantial functional and morphological development during the postnatal period. Some aspects of this development are genetically predetermined, while other aspects depend on environmental influences. Detailed information on postnatal development is important in the interpretation of histopathologic findings in juvenile toxicology and pubertal assay studies, as well as other studies conducted in juvenile rats. Studies were conducted to provide detailed characterization of histologic features of the major functional compartments of immune system organs in male and female Sprague-Dawley rats at weekly intervals from the day of birth through postnatal day (PND) 42. Maturation of the individual immune system organs occurred across a range of ages, with histologic maturation of T-cell-related compartments typically occurring prior to maturation of B-cell-related compartments. The sequence of histologic maturation was bone marrow and thymus on PND 14, mesenteric lymph node on PND 21, Peyer’s patches and bronchus-associated lymphoid tissue on PND 28, mandibular lymph node, nasopharynx-associated lymphoid tissue, and diffuse mucosal mononuclear cell population of small intestine on PND 35, and spleen on PND 42. An estimation of functional maturation can be made based on the morphological indications of maturity of each compartment of immune system organs, but histologic indications of maturity do not confirm functional immunocompetence.


Toxicologic Pathology | 2014

Histologic Features of Prepubertal and Pubertal Reproductive Development in Female Sprague-Dawley Rats

Catherine A. Picut; Amera K. Remick; Midori G. Asakawa; Michelle L. Simons; George A. Parker

In response to growing concerns that environmental chemicals may have adverse effects on human health by altering the endocrine system, the Endocrine Disruptor Screening Program (EDSP), under the auspices of the United States Environmental Protection Agency (U.S. EPA), recently instituted a Tier I battery of tests including a female pubertal assay. This assay requires dosing of female rats from postnatal day (PND) 22 through PND 42 (or 43), the period of pubertal development in the rat, to identify test articles that may have estrogenic or antiestrogenic effects, or may alter hormones or neurotransmitters. While certain landmarks in female rat reproductive development are published, little is published on the microscopic appearance of the female reproductive tract during prepubertal and pubertal development. In this study, reproductive tissues from three female Sprague-Dawley rats were collected each day from PND 20 through PND 50, such that tissues from a total of 93 rats were collected throughout the prepubertal and pubertal period. Tissues were formalin-fixed, trimmed, paraffin-embedded, sectioned at 5-µm thickness, and examined microscopically. The major histologic features of the female reproductive tract throughout this critical period were described in detail. This information will help pathologists interpret findings observed in female pubertal assays.


Experimental and Toxicologic Pathology | 2003

Bromoethane, chloroethane and ethylene oxide induced uterine neoplasms in B6C3F1 mice from 2-year NTP inhalation bioassays: pathology and incidence data revisited

Catherine A. Picut; Hiroaki Aoyama; James W. Holder; Lois Swirsky Gold; Robert R. Maronpot; Darlene Dixon

Chloroethane, bromoethane and ethylene oxide represent a unique set of chemicals that induce endometrial neoplasms in the uterus of B6C3F1 mice following an inhalation route of exposure. The results of the NTPs chronic bioassays with these three compounds resulted in an unusually high incidence of uterine epithelial neoplasms in B6C3F1 mice (chloroethane 86%, bromoethane 56%) and a lower incidence for ethylene oxide (10%). The uterine neoplasms were classified as adenomas, adenocarcinomas, and squamous cell carcinomas for bromoethane, and as adenocarcinomas for both chloroethane and ethylene oxide. The adenocarcinomas and squamous cell carcinomas were invasive into the myometrium and the serosa, and metastasized to a wide variety of organs. Metastatic sites included most commonly the lung, lymph nodes, and ovary at unusually high rates of metastases (79% for chloroethane and 38% for bromoethane). Because of the dramatically high rates of uterine neoplasms (induced by chemicals given by the inhalation route) and metastases, a re-evaluation of the pathology and incidence data was undertaken. The earlier results were confirmed. The mechanism of uterine carcinogenesis by chloroethane, bromoethane and ethylene oxide is unclear.


Toxicologic Pathology | 2009

Spontaneous Hibernomas in Sprague-Dawley Rats

Richard H. Bruner; Meliton N. Novilla; Catherine A. Picut; Jeannie B. Kirkpatrick; Thomas P. O'Neill; Kathryn L. Scully; Wade B. Lawrence; Dawn G. Goodman; Brett H. Saladino; David G. Peters; George A. Parker

Hibernomas are rare neoplasms originating in brown adipose tissue of humans and other animal species, including laboratory animals. Background incidence values for these tumors in all common strains of laboratory rats are generally accepted as being <0.1%. Between April 2000 and April 2007, however, sixty-two hibernomas (an overall prevalence of 3.52%) were observed in a total of 1760 Sprague-Dawley rats assigned to three carcinogenesis bioassays at two separate research laboratories. All rats were obtained from Charles River’s breeding facilities in either Portage, Michigan, or Raleigh, North Carolina. Tumors (twenty-nine benign and thirty-three malignant) were randomly distributed among test article–treated and control groups and were considered to be spontaneous. Most tumors originated in the thoracic cavity, and they were usually described as soft, mottled to tan masses with nodular to lobulated profiles. Immunohistochemical procedures for uncoupling protein 1 (UCP1) confirmed brown adipose tissue as the site of origin rather than white fat. The marked increase in hibernomas in our studies suggests that greater numbers of spontaneous hibernomas may be sporadically encountered in future carcinogenesis studies with Sprague-Dawley rats. The increased potential for hibernomas to arise as spontaneous neoplasms has important implications in studies involving peroxisome proliferators–activated receptor (PPAR) drugs, lipophilic environmental chemicals (e.g., polychlorinated biphenyls), and other molecules or physiologic processes (e.g., β-adrenergic stimulation) that may target brown fat adipocytes.


Toxicologic Pathology | 2017

Postnatal Organ Development as a Complicating Factor in Juvenile Toxicity Studies in Rats

Catherine A. Picut; George A. Parker

Toxicologic pathologists must evaluate tissues of immature animals from a number of types of nonclinical toxicity studies. The pathologist who is familiar with normal postnatal organ development is in a better position to appropriately detect and differentiate between abnormal, delayed, or precocious development. Vacuolation and apoptosis in multiple tissue types are normal components of development that could influence the interpretation of some tissues. Unique postnatal features such as the germal matrix in the brain, gonocytes in the testes, and saccules in the lung may complicate the histopathological evaluation. With the knowledge of normal organ development and critical windows therein, it is possible to design targeted studies to identify xenobiotic toxicity.

Collaboration


Dive into the Catherine A. Picut's collaboration.

Top Co-Authors

Avatar

George A. Parker

Charles River Laboratories

View shared research outputs
Top Co-Authors

Avatar

Amera K. Remick

Charles River Laboratories

View shared research outputs
Top Co-Authors

Avatar

Darlene Dixon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Olson

Charles River Laboratories

View shared research outputs
Top Co-Authors

Avatar

G. Jean Harry

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Geoffrey Hurlburt

Charles River Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge