Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George A. Parker is active.

Publication


Featured researches published by George A. Parker.


Reproductive Toxicology | 2009

Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats: toxicokinetics, thyroid hormone status, and related gene expression.

Shu Ching Chang; David J. Ehresman; James A. Bjork; Kendall B. Wallace; George A. Parker; Donald G. Stump; John L. Butenhoff

Perfluorooctanesulfonate (PFOS), a persistent and accumulative compound, is widely distributed in humans and wildlife. Human exposure can occur early in development, as evidenced by the detection of PFOS in umbilical cord blood and breast milk. As part of a developmental neurotoxicology study for which developmental endpoints, including those related to the developing nervous system, have been reported separately, groups of 25 pregnant Sprague Dawley rats were given daily oral doses of either vehicle control or potassium PFOS (K(+)PFOS) at 0.1, 0.3, and 1.0mg/kg-d from gestation day (GD) 0 (day positive for mating) through postnatal day (PND) 20. An additional 10 pregnant females per treatment group were treated through GD 19 and sacrificed on GD 20 in order to obtain maternal and fetal serum and tissue samples at the end of gestation. The present paper reports the results of samples of serum, liver, brain, and thyroid glands taken at various times to evaluate: (1) serum, liver, and brain PFOS concentrations by LC-MS/MS to establish the relationship between PFOS concentrations and study outcomes; (2) serum thyrotropin (TSH) concentrations by RIA; (3) thyroid follicular cell proliferation index by Ki-67 immunohistochemical staining; (4) thyroid follicle epithelial cell height and colloidal area by histomorphometric analysis; (5) selected liver mRNA transcripts by quantitative RT-PCR. PFOS concentrations in dam and pup serum, liver, and brain increased across treatment groups in approximate proportion to the proportional increases in maternal K(+)PFOS dose, and sex differences in PFOS concentrations were not apparent in pups on PND 21. In pups from K(+)PFOS maternal dose groups on PND 72, serum PFOS had decreased to about 3 and 11% of PND 21 concentrations in males and females, respectively, and liver PFOS had decreased to about 17% of PND 21 concentrations in both sexes. Liver PFOS concentrations were approximately 0.6-0.8 times serum PFOS in GD 20 fetuses, and increased to about 2-4 times serum concentrations on PND 4 and 21. GD 20 fetal and PND 4 pup brain PFOS concentrations were approximately 33% of the corresponding serum concentrations, dropping to approximately 10% by PND 21, in contrast to dam brain PFOS concentrations, which were approximately 4-9% of serum PFOS concentrations. Compared to controls, Cyp2b2 mRNA was increased (2.8-fold) in the 1.0mg/kg-d treatment-group dams on GD 20. In male pups on PND 21, Cyp4A1, ACoA, and Cyp2b2 were increased 2.1-, 1.5-, and 1.8-fold, respectively, and Cyp7A1 was decreased 3.5-fold. Serum TSH and thyroid follicular morphology were not altered by K(+)PFOS treatment. The mean number of proliferating thyroid follicular cells was increased 2.1-fold over control in GD 20 female fetuses from 1.0mg/kg-d-treated dams, yet the highest individual count was similar to that of controls (116 versus 113 in controls).


Reproductive Toxicology | 2009

Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats: Developmental neurotoxicity

John L. Butenhoff; David J. Ehresman; Shu-Ching Chang; George A. Parker; Donald G. Stump

Perfluorooctanesulfonate (PFOS), a persistent and bioaccumulative compound, is widely distributed in humans and wildlife. Exposure of the human fetus and neonate to PFOS can occur in utero and via the mothers milk, respectively. Developmental studies have been conducted with PFOS in the past, including some developmental neurotoxicity endpoints. The objective of this study was to evaluate the functional and morphological changes to the nervous system in rats having gestational and lactational exposures to PFOS per current test guidelines (EPA OPPTS 870.6300 and OECD 426). Female SD rats (25/dosage group) were given daily oral doses of either 0.0, 0.1, 0.3, or 1.0mg/kg-d potassium PFOS (K(+)PFOS) from gestation day (GD) 0 through postnatal day (PND) 20. Offspring were observed through PND 72 for growth, maturation, motor activity, learning and memory, acoustic startle reflex, various behavioral manifestations, and brain weight. Specimens were taken from dams, fetuses, and pups for serum and tissue PFOS concentration, thyroid status endpoints, and liver mRNA transcript analysis, and those results are reported in a companion article. No significant effect was noted on maternal health or reproductive outcomes from dosing of maternal rats with K(+)PFOS throughout gestation. Maternal body weights were statistically significantly lower in the 1.0mg/kg-d dosage group from PND 4 through the end of lactation. Offspring from K(+)PFOS-treated maternal groups did not differ significantly from controls with respect to birth weight, growth, age and weight at attainment of sexual maturation, learning and memory, acoustic startle, various behavioral endpoints, and brain weight. Male offspring from the 1.0mg/kg-d maternal treatment group displayed increased motor activity and reduced habituation on PND 17 but not on PND 13, 21, and 61. The maternal no-observed-adverse-effect-level (NOAEL) was 0.3mg/kg-d based on decreased body weights observed in lactation. The maternal dose associated with the NOAEL for male offspring was 0.3mg/kg-d based on increased motor activity and reduced habituation in the 1.0mg/kg-d maternal dose-group male offspring on PND 17. The maternal dose associated with the NOAEL for female offspring was >1.0mg/kg-d. Mean serum concentrations of PFOS reported in a companion article for the 0.3mg/kg-d group maternal rats are several hundred times higher than those reported for females in the United States general population.


Toxicologic Pathology | 2012

Immune Functioning in Non lymphoid Organs: The Liver

George A. Parker; Catherine A. Picut

The liver is the primary hematopoietic organ of the mammalian body during the fetal stage. The postnatal liver retains immunologically important functions and contains a substantial population of immunologically active cells, including T and B lymphocytes, Kupffer cells, liver-adapted natural killer (NK) cells (pit cells), natural killer cells expressing T cell receptor (NKT cells), stellate cells, and dendritic cells. The liver is the major site of production of the acute phase proteins that are associated with acute inflammatory reactions. Kupffer cells have an important role in the nonspecific phagocytosis that comprises a major component of the barrier to invasion of pathogenic organisms from the intestine. Hepatic NK and NKT cells are important in the nonspecific cell killing that is important in resistance to tumor cell invasion. The liver has a major role in deletion of activated T cells and induction of tolerance to ingested and self-antigens. Disposal of waste molecules generated through inflammatory, immunologic, or general homeostatic processes is accomplished via the action of specific endocytic receptors on sinusoidal endothelial cells of the liver. Age-related changes in sinusoids (pseudocapillarization), autophagy, and functions of various hepatic cell populations result in substantial alterations in many of these immunologically important functions.


Toxicologic Pathology | 2015

Postnatal Development of the Testis in the Rat Morphologic Study and Correlation of Morphology to Neuroendocrine Parameters

Catherine A. Picut; Amera K. Remick; Eveline P. C. T. de Rijk; Michelle L. Simons; Donald G. Stump; George A. Parker

Histopathologic examination of the testis from juvenile rats is often necessary to characterize the safety of new drugs for pediatric use and is a required end point in male pubertal development and thyroid function assays. To aid in evaluation and interpretation of the immature testis, the characteristic histologic features of the developing rat testis throughout postnatal development are described and correlated with published neuroendocrine parameter changes. During the neonatal period (postnatal day [PND] 3–7), seminiferous tubules contained gonocytes and mitotically active immature Sertoli cells. Profound proliferation of spermatogonia and continued Sertoli cell proliferation occurred in the early infantile period (PND 8–14). The spermatogonia reached maximum density forming double-layered rosettes with Sertoli cells in the late infantile period (PND 15–20). Leptotene/zygotene spermatocytes appeared centrally as tubular lumina developed, and individual tubules segregated into stages. The juvenile period (PND 21–32) featured a dramatic increase in number and size of pachytene spermatocytes with the formation of round spermatids and loss of “infantile” rosette architecture. In the peri-pubertal period (PND 32–55), stage VII tubules containing step 19 spermatids were visible by PND 46. The presented baseline morphologic and endocrinologic information will help pathologists distinguish delayed development from xenobiotic effects, determine pathogenesis when confronted with nonspecific findings, and identify sensitive time points for targeted study design.


Toxicologic Pathology | 2015

Postnatal Ovary Development in the Rat Morphologic Study and Correlation of Morphology to Neuroendocrine Parameters

Catherine A. Picut; Darlene Dixon; Michelle L. Simons; Donald G. Stump; George A. Parker; Amera K. Remick

Histopathologic examination of the immature ovary is a required end point on juvenile toxicity studies and female pubertal and thyroid function assays. To aid in this evaluation and interpretation of the immature ovary, the characteristic histologic features of rat ovary through the developmental periods are described. These histologic features are correlated with published changes in neuroendocrine profiles as the hypothalamic–pituitary–gonadal axis matures. During the neonatal stage (postnatal day [PND] 0–7), ovarian follicle development is independent of pituitary gonadotropins (luteinizing hormone [LH] or follicle-stimulating hormone [FSH]), and follicles remain preantral. Antral development of “atypical” follicles occurs in the early infantile period (PND 8–14) when the ovary becomes responsive to pituitary gonadotropins. In the late infantile period (PND 15–20), the zona pellucida appears, the hilus forms, and antral follicles mature by losing their “atypical” appearance. The juvenile stage (PND 21–32) is the stage when atresia of medullary follicles occurs corresponding to a nadir in FSH levels. In the peripubertal period (PND 33–37), atresia subsides as FSH levels rebound, and LH begins its bimodal surge pattern leading to ovulation. This report will provide pathologists with baseline morphologic and endocrinologic information to aid in identification and interpretation of xenobiotic effects in the ovary of the prepubertal rat.


Toxicologic Pathology | 2009

The Metrial Gland in the Rat and Its Similarities to Granular Cell Tumors

Catherine A. Picut; Cynthia L. Swanson; Regina F. Parker; Kathryn L. Scully; George A. Parker

Metrial glands are normal structures located in the mesometrial triangle of the pregnant rat uterus from gestational day (GD) 8 through termination of pregnancy. Metrial glands are composed of a dynamic mixed cell population of granulated metrial gland (GMG) cells, endometrial stromal cells, trophoblasts, blood vessels, and fibroblasts. Collections of similar cells may be seen in association with pseudopregnancy and other hormonal disturbances. Granulated metrial gland cells are the hallmark cell of the metrial gland. They are bone-marrow-derived, perforin-positive, natural killer cells that proliferate in the pregnant uterus. Understanding the normal histogenesis of the metrial gland and recognizing the possible existence of GMG cells and a reactive metrial gland in the nonpregnant state are important when examining any uterine lesion that contains granulated cells. This report demonstrates that the cellular composition, morphology, and immunohistochemical staining profile of normal metrial glands are similar to reported granular cell neoplasms in rats and mice. The possibility of a non-neoplastic lesion involving the metrial gland should be considered when proliferative lesions involving granulated cells are observed in the uterus of mice and rats from nonclinical toxicity studies. Positive immunohistochemical staining for perforin and S100 would assist in the classification of such lesions as a reactive metrial gland or decidual reaction.


Reproductive Toxicology | 2012

Toxicological evaluation of ammonium perfluorobutyrate in rats: Twenty-eight-day and ninety-day oral gavage studies ☆

John L. Butenhoff; James A. Bjork; Shu Ching Chang; David J. Ehresman; George A. Parker; Kaberi P. Das; Christopher Lau; Paul H. Lieder; Francois van Otterdijk; Kendall B. Wallace

Sequential 28-day and 90-day oral toxicity studies were performed in male and female rats with ammonium perfluorobutyrate (NH(4)(+)PFBA) at doses up to 150 and 30mg/kg-d, respectively. Ammonium perfluorooctanoate was used as a comparator at a dose of 30mg/kg-d in the 28-day study. Female rats were unaffected by NH(4)(+)PFBA. Effects in males included: increased liver weight, slight to minimal hepatocellular hypertrophy; decreased serum total cholesterol; and reduced serum thyroxin with no change in serum thyrotropin. During recovery, liver weight, histological, and cholesterol effects were resolved. Results of RT-qPCR were consistent with increased transcriptional expression of the xenosensor nuclear receptors PPARα and CAR as well as the thyroid receptor, and decreased expression of Cyp1A1 (Ah receptor-regulated). No observable adverse effect levels (NOAELs) were 6 and >150mg/kg-d for male and female rats in the 28-day study and 6 and >30mg/kg-d in the 90-dat study, respectively.


Toxicologic Pathology | 2015

Histologic Features of Postnatal Development of Immune System Organs in the Sprague-Dawley Rat:

George A. Parker; Catherine A. Picut; Cynthia L. Swanson; Jonathan D. Toot

The immune system of the rat undergoes substantial functional and morphological development during the postnatal period. Some aspects of this development are genetically predetermined, while other aspects depend on environmental influences. Detailed information on postnatal development is important in the interpretation of histopathologic findings in juvenile toxicology and pubertal assay studies, as well as other studies conducted in juvenile rats. Studies were conducted to provide detailed characterization of histologic features of the major functional compartments of immune system organs in male and female Sprague-Dawley rats at weekly intervals from the day of birth through postnatal day (PND) 42. Maturation of the individual immune system organs occurred across a range of ages, with histologic maturation of T-cell-related compartments typically occurring prior to maturation of B-cell-related compartments. The sequence of histologic maturation was bone marrow and thymus on PND 14, mesenteric lymph node on PND 21, Peyer’s patches and bronchus-associated lymphoid tissue on PND 28, mandibular lymph node, nasopharynx-associated lymphoid tissue, and diffuse mucosal mononuclear cell population of small intestine on PND 35, and spleen on PND 42. An estimation of functional maturation can be made based on the morphological indications of maturity of each compartment of immune system organs, but histologic indications of maturity do not confirm functional immunocompetence.


Toxicologic Pathology | 2010

Toxicopathology of the Developing Immune System Investigative and Development Strategies

Daniel Weinstock; David B. Lewis; George A. Parker; Joseph Beyer; Mark Collinge; Thomas P. Brown; Noel Dybdal

Developmental immunotoxicity (DIT) has gained attention with the recognition that environmental chemicals can potentially affect the developing immune system and the incidence of childhood allergic diseases. Preclinical safety assessment of pharmaceuticals for men and women of childbearing potential as well as for pediatric and juvenile indications may require DIT assessments. Draft documents from environmental and chemical regulatory agencies propose strategies that use the rat as a test species and incorporate histopathology and functional testing as endpoints. While there are no guidelines for DIT assessment of pharmaceuticals, current discussions suggest that combining immunotoxicity and developmental and reproductive toxicology studies may serve this purpose. Knowledge of the principles and applications of DIT will facilitate participation in strategy development and effective conduct of relevant studies.


Toxicologic Pathology | 1995

Liver Lesions in Rats Associated with Wrapping of the Torso

George A. Parker; W. Bruce Gibson

Liver lesions were noted in control and dosed rats from a percutaneous toxicity study that involved wrapping of the torso to prevent oral ingestion following dermal application of test articles. Further investigation in a follow-up study revealed that the liver lesions were related to wrapping of the torso rather than to test-article administration because the liver lesions only appeared in wrapped animals, including sham-treated controls, but not in naive control animals. The liver lesions, which included centrilobular coagulative necrosis, inflammatory cell infiltration around biliary tracts, histiocytosis, fibrosis, and granulomatous inflammation, were compatible with infarction and associated inflammatory and reparative changes. There was no discernible pattern of involvement of specific hepatic lobes or regions of lobes. Many of the lesions were sufficiently severe to be considered life-threatening. This potentially significant complication should be considered when developing study protocols that involve wrapping of the torso of rats, and consideration should be given to inclusion of a naive control group that is not wrapped.

Collaboration


Dive into the George A. Parker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Butenhoff

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jerry F. Hardisty

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amera K. Remick

Charles River Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin S. McDorman

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge