Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine Graves is active.

Publication


Featured researches published by Catherine Graves.


Nature | 2012

Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser

S. M. Vinko; O. Ciricosta; B. I. Cho; K. Engelhorn; H.-K. Chung; Colin Brown; T. Burian; J. Chalupský; Roger Falcone; Catherine Graves; V. Hajkova; Andrew Higginbotham; L. Juha; J. Krzywinski; Hae Ja Lee; Marc Messerschmidt; C. D. Murphy; Y. Ping; Andreas Scherz; W. F. Schlotter; S. Toleikis; J. J. Turner; L. Vysin; T. Wang; B. Wu; U. Zastrau; Diling Zhu; R. W. Lee; P. A. Heimann; B. Nagler

Matter with a high energy density (>105 joules per cm3) is prevalent throughout the Universe, being present in all types of stars and towards the centre of the giant planets; it is also relevant for inertial confinement fusion. Its thermodynamic and transport properties are challenging to measure, requiring the creation of sufficiently long-lived samples at homogeneous temperatures and densities. With the advent of the Linac Coherent Light Source (LCLS) X-ray laser, high-intensity radiation (>1017 watts per cm2, previously the domain of optical lasers) can be produced at X-ray wavelengths. The interaction of single atoms with such intense X-rays has recently been investigated. An understanding of the contrasting case of intense X-ray interaction with dense systems is important from a fundamental viewpoint and for applications. Here we report the experimental creation of a solid-density plasma at temperatures in excess of 106 kelvin on inertial-confinement timescales using an X-ray free-electron laser. We discuss the pertinent physics of the intense X-ray–matter interactions, and illustrate the importance of electron–ion collisions. Detailed simulations of the interaction process conducted with a radiative-collisional code show good qualitative agreement with the experimental results. We obtain insights into the evolution of the charge state distribution of the system, the electron density and temperature, and the timescales of collisional processes. Our results should inform future high-intensity X-ray experiments involving dense samples, such as X-ray diffractive imaging of biological systems, material science investigations, and the study of matter in extreme conditions.


Nature Materials | 2013

Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo

Catherine Graves; A. H. Reid; Tianhan Wang; Benny Wu; S. de Jong; K. Vahaplar; I. Radu; David Bernstein; M. Messerschmidt; L. Müller; Ryan Coffee; Mina Bionta; Sascha W. Epp; Robert Hartmann; N. Kimmel; G. Hauser; A. Hartmann; P. Holl; H. Gorke; Johan H. Mentink; A. Tsukamoto; A. Fognini; J. J. Turner; W. F. Schlotter; D. Rolles; H. Soltau; L. Struder; Yves Acremann; A.V. Kimel; Andrei Kirilyuk

Ultrafast laser techniques have revealed extraordinary spin dynamics in magnetic materials that equilibrium descriptions of magnetism cannot explain. Particularly important for future applications is understanding non-equilibrium spin dynamics following laser excitation on the nanoscale, yet the limited spatial resolution of optical laser techniques has impeded such nanoscale studies. Here we present ultrafast diffraction experiments with an X-ray laser that probes the nanoscale spin dynamics following optical laser excitation in the ferrimagnetic alloy GdFeCo, which exhibits macroscopic all-optical switching. Our study reveals that GdFeCo displays nanoscale chemical and magnetic inhomogeneities that affect the spin dynamics. In particular, we observe Gd spin reversal in Gd-rich nanoregions within the first picosecond driven by the non-local transfer of angular momentum from larger adjacent Fe-rich nanoregions. These results suggest that a magnetic materials microstructure can be engineered to control transient laser-excited spins, potentially allowing faster (~ 1 ps) spin reversal than in present technologies.


design automation conference | 2016

Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector multiplication

Miao Hu; John Paul Strachan; Zhiyong Li; Emmanuelle Merced Grafals; Noraica Davila; Catherine Graves; Si-Ty Lam; Ning Ge; Jianhua Joshua Yang; R. Stanley Williams

Vector-matrix multiplication dominates the computation time and energy for many workloads, particularly neural network algorithms and linear transforms (e.g, the Discrete Fourier Transform). Utilizing the natural current accumulation feature of memristor crossbar, we developed the Dot-Product Engine (DPE) as a high density, high power efficiency accelerator for approximate matrix-vector multiplication. We firstly invented a conversion algorithm to map arbitrary matrix values appropriately to memristor conductances in a realistic crossbar array, accounting for device physics and circuit issues to reduce computational errors. The accurate device resistance programming in large arrays is enabled by close-loop pulse tuning and access transistors. To validate our approach, we simulated and benchmarked one of the state-of-the-art neural networks for pattern recognition on the DPEs. The result shows no accuracy degradation compared to software approach (99 % pattern recognition accuracy for MNIST data set) with only 4 Bit DAC/ADC requirement, while the DPE can achieve a speed-efficiency product of 1,000× to 10,000× compared to a custom digital ASIC.


Advanced Materials | 2016

Direct observation of localized radial oxygen migration in functioning tantalum oxide memristors

Suhas Kumar; Catherine Graves; John Paul Strachan; Emmanuelle Merced Grafals; A. L. D. Kilcoyne; Tolek Tyliszczak; Johanna Nelson Weker; Yoshio Nishi; R. Stanley Williams

Oxygen migration in tantalum oxide, a promising next-generation storage material, is studied using in operando X-ray absorption spectromicroscopy. This approach allows a physical description of the evolution of conduction channel and eventual device failure. The observed ring-like patterns of oxygen concentration are modeled using thermophoretic forces and Fick diffusion, establishing the critical role of temperature-driven oxygen migration.


Nano Letters | 2015

Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo - Competition with Nanoscale Heterogeneity

TianMin Liu; Tianhan Wang; A. H. Reid; M. Savoini; Xiaofei Wu; Benny Koene; Patrick Granitzka; Catherine Graves; Daniel Higley; Zhao Chen; Gary Razinskas; Markus Hantschmann; Andreas Scherz; J. Stöhr; A. Tsukamoto; Bert Hecht; A.V. Kimel; Andrei Kirilyuk; T.H.M. Rasing; H. A. Dürr

Single femtosecond optical laser pulses, of sufficient intensity, are demonstrated to reverse magnetization in a process known as all-optical switching. Gold two-wire antennas are placed on the all-optical switching film TbFeCo. These structures are resonant with the optical field, and they create a field enhancement in the near-field which confines the area where optical switching can occur. The magnetic switching that occurs around and below the antenna is imaged using resonant X-ray holography and magnetic circular dichroism. The results not only show the feasibility of controllable switching with antenna assistance but also demonstrate the highly inhomogeneous nature of the switching process, which is attributed to the process depending on the materials heterogeneity.


Journal of Applied Physics | 2015

In-operando synchronous time-multiplexed O K-edge x-ray absorption spectromicroscopy of functioning tantalum oxide memristors

Suhas Kumar; Catherine Graves; John Paul Strachan; A. L. David Kilcoyne; Tolek Tyliszczak; Yoshio Nishi; R. Stanley Williams

Memristors are receiving keen interest because of their potential varied applications and promising large-scale information storage capabilities. Tantalum oxide is a memristive material that has shown promise for high-performance nonvolatile computer memory. The microphysics has been elusive because of the small scale and subtle physical changes that accompany conductance switching. In this study, we probed the atomic composition, local chemistry, and electronic structure of functioning tantalum oxide memristors through spatially mapped O K-edge x-ray absorption. We developed a time-multiplexed spectromicroscopy technique to enhance the weak and possibly localized oxide modifications with spatial and spectral resolutions of <30 nm and 70 meV, respectively. During the initial stages of conductance switching of a micrometer sized crosspoint device, the spectral changes were uniform within the spatial resolution of our technique. When the device was further driven with millions of high voltage-pulse cycles, ...


Advanced Materials | 2018

Memristor‐Based Analog Computation and Neural Network Classification with a Dot Product Engine

Miao Hu; Catherine Graves; Can Li; Yunning Li; Ning Ge; Eric Montgomery; Noraica Davila; Hao Jiang; R. Stanley Williams; Jianhua Yang; Qiangfei Xia; John Paul Strachan

Using memristor crossbar arrays to accelerate computations is a promising approach to efficiently implement algorithms in deep neural networks. Early demonstrations, however, are limited to simulations or small-scale problems primarily due to materials and device challenges that limit the size of the memristor crossbar arrays that can be reliably programmed to stable and analog values, which is the focus of the current work. High-precision analog tuning and control of memristor cells across a 128 × 64 array is demonstrated, and the resulting vector matrix multiplication (VMM) computing precision is evaluated. Single-layer neural network inference is performed in these arrays, and the performance compared to a digital approach is assessed. Memristor computing system used here reaches a VMM accuracy equivalent of 6 bits, and an 89.9% recognition accuracy is achieved for the 10k MNIST handwritten digit test set. Forecasts show that with integrated (on chip) and scaled memristors, a computational efficiency greater than 100 trillion operations per second per Watt is possible.


Applied Physics Letters | 2017

Temperature and field-dependent transport measurements in continuously tunable tantalum oxide memristors expose the dominant state variable

Catherine Graves; Noraica Davila; Emmanuelle Merced-Grafals; Si-Ty Lam; John Paul Strachan; R. Stanley Williams

Applications of memristor devices are quickly moving beyond computer memory to areas of analog and neuromorphic computation. These applications require the design of devices with different characteristics from binary memory, such as a large tunable range of conductance. A complete understanding of the conduction mechanisms and their corresponding state variable(s) is crucial for optimizing performance and designs in these applications. Here we present measurements of low bias I–V characteristics of 6 states in a Ta/ tantalum-oxide (TaOx)/Pt memristor spanning over 2 orders of magnitude in conductance and temperatures from 100 K to 500 K. Our measurements show that the 300 K device conduction is dominated by a temperature-insensitive current that varies with non-volatile memristor state, with an additional leakage contribution from a thermally-activated current channel that is nearly independent of the memristor state. We interpret these results with a parallel conduction model of Mott hopping and Schottky...


Applied Physics Letters | 2013

Magnetic design evolution in perpendicular magnetic recording media as revealed by resonant small angle x-ray scattering

Tianhan Wang; Virat Mehta; Yoshihiro Ikeda; H. Do; Kentaro Takano; Sylvia Florez; Bruce D. Terris; Benny Wu; Catherine Graves; Michael Shu; R. Rick; Andreas Scherz; J. Stöhr; O. Hellwig

We analyze the magnetic design for different generations of perpendicular magnetic recording (PMR) media using resonant soft x-ray small angle x-ray scattering. This technique allows us to simultaneously extract in a single experiment the key structural and magnetic parameters, i.e., lateral structural grain and magnetic cluster sizes as well as their distributions. We find that earlier PMR media generations relied on an initial reduction in the magnetic cluster size down to the grain level of the high anisotropy granular base layer, while very recent media designs introduce more exchange decoupling also within the softer laterally continuous cap layer. We highlight that this recent development allows optimizing magnetic cluster size and magnetic cluster size distribution within the composite media system for maximum achievable area density, while keeping the structural grain size roughly constant.


Physical Review B | 2015

Irreversible transformation of ferromagnetic ordered stripe domains in single-shot infrared-pump/resonant-x-ray-scattering-probe experiments

Nicolas Bergeard; S. Schaffert; Víctor López-Flores; N. Jaouen; Jan Geilhufe; Christian M. Günther; Michael Schneider; Catherine Graves; Tianhan Wang; Benny Wu; Andreas Scherz; Cédric Baumier; Renaud Delaunay; Franck Fortuna; Marina Tortarolo; Bharati Tudu; O. Krupin; Michael P. Minitti; Joe Robinson; W. F. Schlotter; J. J. Turner; Jan Lüning; S. Eisebitt; C. Boeglin

The evolution of a magnetic domain structure upon excitation by an intense, femtosecond infrared (IR) laser pulse has been investigated using single-shot based time-resolved resonant x-ray scattering at the x-ray free electron laser LCLS. A well-ordered stripe domain pattern as present in a thin CoPd alloy film has been used as a prototype magnetic domain structure for this study. The fluence of the IR laser pump pulse was sufficient to lead to an almost complete quenching of the magnetization within the ultrafast demagnetization process taking place within the first few hundreds of femtoseconds following the IR laser pump pulse excitation. On longer time scales this excitation gave rise to subsequent irreversible transformations of the magnetic domain structure. Under our specific experimental conditions, it took about 2 ns before the magnetization started to recover. After about 5 ns the previously ordered stripe domain structure had evolved into a disordered labyrinth domain structure. Surprisingly, we observe after about 7 ns the occurrence of a partially ordered stripe domain structure reoriented into a novel direction. It is this domain structure in which the samples magnetization stabilizes as revealed by scattering patterns recorded long after the initial pump-probe cycle. Using micromagnetic simulations we can explain this observation based on changes of the magnetic anisotropy going along with heat dissipation in the film.

Collaboration


Dive into the Catherine Graves's collaboration.

Top Co-Authors

Avatar

Andreas Scherz

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. J. Turner

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. F. Schlotter

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. H. Reid

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Diling Zhu

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge