Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. H. Reid is active.

Publication


Featured researches published by A. H. Reid.


Nature Materials | 2013

Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo

Catherine Graves; A. H. Reid; Tianhan Wang; Benny Wu; S. de Jong; K. Vahaplar; I. Radu; David Bernstein; M. Messerschmidt; L. Müller; Ryan Coffee; Mina Bionta; Sascha W. Epp; Robert Hartmann; N. Kimmel; G. Hauser; A. Hartmann; P. Holl; H. Gorke; Johan H. Mentink; A. Tsukamoto; A. Fognini; J. J. Turner; W. F. Schlotter; D. Rolles; H. Soltau; L. Struder; Yves Acremann; A.V. Kimel; Andrei Kirilyuk

Ultrafast laser techniques have revealed extraordinary spin dynamics in magnetic materials that equilibrium descriptions of magnetism cannot explain. Particularly important for future applications is understanding non-equilibrium spin dynamics following laser excitation on the nanoscale, yet the limited spatial resolution of optical laser techniques has impeded such nanoscale studies. Here we present ultrafast diffraction experiments with an X-ray laser that probes the nanoscale spin dynamics following optical laser excitation in the ferrimagnetic alloy GdFeCo, which exhibits macroscopic all-optical switching. Our study reveals that GdFeCo displays nanoscale chemical and magnetic inhomogeneities that affect the spin dynamics. In particular, we observe Gd spin reversal in Gd-rich nanoregions within the first picosecond driven by the non-local transfer of angular momentum from larger adjacent Fe-rich nanoregions. These results suggest that a magnetic materials microstructure can be engineered to control transient laser-excited spins, potentially allowing faster (~ 1 ps) spin reversal than in present technologies.


Applied Physics Letters | 2012

X-ray pulse preserving single-shot optical cross-correlation method for improved experimental temporal resolution

M. Beye; O. Krupin; G. Hays; A. H. Reid; Daniela Rupp; S. de Jong; S. Lee; W. S. Lee; Yi-De Chuang; Ryan Coffee; James Cryan; J. M. Glownia; A. Föhlisch; M. R. Holmes; Alan Fry; William E. White; Christoph Bostedt; A. O. Scherz; Hermann A. Dürr; W. F. Schlotter

We measured the relative arrival time between an optical pulse and a soft x-ray pulse from a free-electron laser. This femtosecond cross-correlation measurement was achieved by observing the change in optical reflectivity induced through the absorption of a fraction of the x-ray pulse. The main x-ray pulse energy remained available for an independent pump-probe experiment where the sample may be opaque to soft x-rays. The method was employed to correct the two-pulse delay data from a canonical pump-probe experiment and demonstrate 130 ± 20 fs (FWHM) temporal resolution. We further analyze possible timing jitter sources and point to future improvements.


Review of Scientific Instruments | 2015

Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

Stephen Weathersby; Garth Brown; Martin Centurion; T. Chase; Ryan Coffee; Jeff Corbett; John Eichner; J. Frisch; Alan Fry; Markus Gühr; Nick Hartmann; C. Hast; Robert Hettel; Renee K. Jobe; Erik N. Jongewaard; James Lewandowski; Renkai Li; Aaron M. Lindenberg; Igor Makasyuk; Justin E. May; D. McCormick; M. N. Nguyen; A. H. Reid; Xiaozhe Shen; Klaus Sokolowski-Tinten; T. Vecchione; Sharon Vetter; J. Wu; Jie Yang; Hermann A. Dürr

Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.


Nano Letters | 2015

Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo - Competition with Nanoscale Heterogeneity

TianMin Liu; Tianhan Wang; A. H. Reid; M. Savoini; Xiaofei Wu; Benny Koene; Patrick Granitzka; Catherine Graves; Daniel Higley; Zhao Chen; Gary Razinskas; Markus Hantschmann; Andreas Scherz; J. Stöhr; A. Tsukamoto; Bert Hecht; A.V. Kimel; Andrei Kirilyuk; T.H.M. Rasing; H. A. Dürr

Single femtosecond optical laser pulses, of sufficient intensity, are demonstrated to reverse magnetization in a process known as all-optical switching. Gold two-wire antennas are placed on the all-optical switching film TbFeCo. These structures are resonant with the optical field, and they create a field enhancement in the near-field which confines the area where optical switching can occur. The magnetic switching that occurs around and below the antenna is imaged using resonant X-ray holography and magnetic circular dichroism. The results not only show the feasibility of controllable switching with antenna assistance but also demonstrate the highly inhomogeneous nature of the switching process, which is attributed to the process depending on the materials heterogeneity.


Nature Communications | 2016

Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses

Jie Yang; Markus Guehr; T. Vecchione; Matthew S. Robinson; Renkai Li; Nick Hartmann; Xiaozhe Shen; Ryan Coffee; Jeff Corbett; Alan Fry; Kelly J. Gaffney; Tais Gorkhover; C. Hast; K. Jobe; Igor Makasyuk; A. H. Reid; Joseph P. Robinson; Sharon Vetter; Fenglin Wang; Stephen Weathersby; Charles Yoneda; Martin Centurion; Xijie Wang

Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angström spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 Å) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions.


Nano Letters | 2015

Dynamic Structural Response and Deformations of Monolayer MoS2 Visualized by Femtosecond Electron Diffraction

Ehren M. Mannebach; Renkai Li; Karel-Alexander N. Duerloo; Clara Nyby; Peter Zalden; T. Vecchione; Friederike Ernst; A. H. Reid; T. Chase; Xiaozhe Shen; Stephen Weathersby; C. Hast; Robert Hettel; Ryan Coffee; Nick Hartmann; Alan Fry; Yifei Yu; Linyou Cao; Tony F. Heinz; Evan J. Reed; Hermann A. Dürr; Xijie Wang; Aaron M. Lindenberg

Two-dimensional materials are subject to intrinsic and dynamic rippling that modulates their optoelectronic and electromechanical properties. Here, we directly visualize the dynamics of these processes within monolayer transition metal dichalcogenide MoS2 using femtosecond electron scattering techniques as a real-time probe with atomic-scale resolution. We show that optical excitation induces large-amplitude in-plane displacements and ultrafast wrinkling of the monolayer on nanometer length-scales, developing on picosecond time-scales. These deformations are associated with several percent peak strains that are fully reversible over tens of millions of cycles. Direct measurements of electron-phonon coupling times and the subsequent interfacial thermal heat flow between the monolayer and substrate are also obtained. These measurements, coupled with first-principles modeling, provide a new understanding of the dynamic structural processes that underlie the functionality of two-dimensional materials and open up new opportunities for ultrafast strain engineering using all-optical methods.


Scientific Reports | 2016

Indirect excitation of ultrafast demagnetization.

Boris Vodungbo; Bahrati Tudu; Jonathan Perron; Renaud Delaunay; L. Müller; M. H. Berntsen; G. Grübel; Gregory Malinowski; Christian Weier; J. Gautier; Guillaume Lambert; Philippe Zeitoun; C. Gutt; Emmanuelle Jal; A. H. Reid; Patrick Granitzka; N. Jaouen; Georgi L. Dakovski; Stefan Moeller; Michael P. Minitti; Ankush Mitra; S. Carron; Bastian Pfau; Clemens von Korff Schmising; Michael D. Schneider; S. Eisebitt; Jan Lüning

Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions.


Review of Scientific Instruments | 2016

Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser

Daniel Higley; Konstantin Hirsch; Georgi L. Dakovski; Emmanuelle Jal; Edwin Yuan; TianMin Liu; Alberto Lutman; James P. MacArthur; Elke Arenholz; Zhao Chen; G. Coslovich; Peter Denes; Patrick Granitzka; P. Hart; Matthias C. Hoffmann; John Joseph; Loic Le Guyader; Ankush Mitra; Stefan Moeller; Hendrik Ohldag; Matthew D. Seaberg; Padraic Shafer; J. Stöhr; A. Tsukamoto; H.-D. Nuhn; A. H. Reid; Hermann A. Dürr; W. F. Schlotter

X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L(3,2)-edges. The high brightness of the X-ray free electron laser combined with high accuracy detection of incident and transmitted X-rays enables ultrafast X-ray magnetic circular dichroism studies of unprecedented sensitivity. This new capability is applied to a study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature.


Applied Physics Letters | 2016

Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films

T. Chase; M. Trigo; A. H. Reid; Renkai Li; T. Vecchione; Xiaozhe Shen; Stephen Weathersby; Ryan Coffee; Nick Hartmann; David A. Reis; Xijie Wang; Hermann A. Dürr

We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.


Physical Review B | 2016

Generation mechanism of terahertz coherent acoustic phonons in Fe

T. Henighan; M. Trigo; Stefano Bonetti; Patrick Granitzka; D. Higley; Zhao Chen; M. P. Jiang; Roopali Kukreja; A. X. Gray; A. H. Reid; Emmanuelle Jal; Matthias C. Hoffmann; M. Kozina; Sanghoon Song; Matthieu Chollet; Diling Zhu; Pengfa Xu; Jaewoo Jeong; Karel Carva; Pablo Maldonado; Peter M. Oppeneer; Mahesh G. Samant; S. S. P. Parkin; David A. Reis; Hermann A. Dürr

T Henighan1,2,∗ M Trigo, S Bonetti, P Granitzka, D Higley, Z Chen, M P Jiang, R Kukreja, A Gray, A H Reid, E Jal, M C Hoffmann, M Kozina, S Song, M Chollet, D Zhu, P F Xu, J Jeong, K Carva, P Maldonado, P M Oppeneer, M G Samant, S S P. Parkin, D A Reis, and H A Dürr3† PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California, USA Physics Department, Stanford University, Stanford, California, USA Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025. Van der Waals-Zeeman Institute, University of Amsterdam, 1018XE Amsterdam, The Netherlands Department of Photon Science and Applied Physics, Stanford University, Stanford, California, USA Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA Max-Planck Institute for Microstructure Physics, 06120 Halle (Saale), Germany Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic and Department of Physics and Astronomy, Uppsala University, P. O. Box 516, S-75120 Uppsala, Sweden (Dated: September 14, 2015)

Collaboration


Dive into the A. H. Reid's collaboration.

Top Co-Authors

Avatar

Renkai Li

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xiaozhe Shen

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xijie Wang

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ryan Coffee

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. F. Schlotter

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stephen Weathersby

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Chase

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hermann A. Dürr

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Patrick Granitzka

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Vecchione

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge