Catherine Isel
University of Strasbourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catherine Isel.
Nucleic Acids Research | 2012
Emilie Fournier; Vincent Moules; Boris Essere; Jean-Christophe Paillart; Jean-Daniel Sirbat; Catherine Isel; Annie Cavalier; Jean-Paul Rolland; Daniel Thomas; Bruno Lina; Roland Marquet
The influenza A virus genome consists of eight viral RNAs (vRNAs) that form viral ribonucleoproteins (vRNPs). Even though evidence supporting segment-specific packaging of vRNAs is accumulating, the mechanism ensuring selective packaging of one copy of each vRNA into the viral particles remains largely unknown. We used electron tomography to show that the eight vRNPs emerge from a common ‘transition zone’ located underneath the matrix layer at the budding tip of the virions, where they appear to be interconnected and often form a star-like structure. This zone appears as a platform in 3D surface rendering and is thick enough to contain all known packaging signals. In vitro, all vRNA segments are involved in a single network of intermolecular interactions. The regions involved in the strongest interactions were identified and correspond to known packaging signals. A limited set of nucleotides in the 5′ region of vRNA 7 was shown to interact with vRNA 6 and to be crucial for packaging of the former vRNA. Collectively, our findings support a model in which the eight genomic RNA segments are selected and packaged as an organized supramolecular complex held together by direct base pairing of the packaging signals.
Trends in Microbiology | 2014
Marie Gerber; Catherine Isel; Vincent Moules; Roland Marquet
Influenza A viruses package their segmented RNA genome in a selective manner. Electron tomography, biochemical assays, and replication assays of viruses produced by reverse genetics recently unveiled molecular details of this mechanism, whereby different influenza viral strains form different and unique networks of direct intermolecular RNA-RNA interactions. Together with detailed views of the three-dimensional structure of the viral ribonucleoparticles, these recent advances help us understand the rules that govern genome packaging. They also have deep implications for the genetic reassortment processes, which are responsible for devastating pandemics.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Boris Essere; Matthieu Yver; Cyrille Gavazzi; Olivier Terrier; Catherine Isel; Emilie Fournier; Fabienne Giroux; Julien Textoris; Thomas Julien; Clio Socratous; Manuel Rosa-Calatrava; Bruno Lina; Roland Marquet; Vincent Moules
Significance Genetic reassortment is one of the main mechanisms by which pandemic viruses emerge during influenza A coinfection, but little is known about the molecular mechanisms affecting this process. Here, we studied genetic reassortment between a human and an avian influenza A strain, focusing on the generation of reassortant viruses containing the avian HA gene, which have pandemic potential. We found that this genetic process was strongly biased, and we show that packaging signals are crucial for genetic reassortment and that suboptimal compatibility between the segment-specific packaging signals of the two parental viruses limits the emergence of reassortant viruses. The fragmented nature of the influenza A genome allows the exchange of gene segments when two or more influenza viruses infect the same cell, but little is known about the rules underlying this process. Here, we studied genetic reassortment between the A/Moscow/10/99 (H3N2, MO) virus originally isolated from human and the avian A/Finch/England/2051/91 (H5N2, EN) virus and found that this process is strongly biased. Importantly, the avian HA segment never entered the MO genetic background alone but always was accompanied by the avian PA and M fragments. Introduction of the 5′ and 3′ packaging sequences of HAMO into an otherwise HAEN backbone allowed efficient incorporation of the chimerical viral RNA (vRNA) into the MO genetic background. Furthermore, forcing the incorporation of the avian M segment or introducing five silent mutations into the human M segment was sufficient to drive coincorporation of the avian HA segment into the MO genetic background. These silent mutations also strongly affected the genotype of reassortant viruses. Taken together, our results indicate that packaging signals are crucial for genetic reassortment and that suboptimal compatibility between the vRNA packaging signals, which are detected only when vRNAs compete for packaging, limit this process.
Nucleic Acids Research | 2013
Cyrille Gavazzi; Catherine Isel; Emilie Fournier; Vincent Moules; Annie Cavalier; Daniel Thomas; Bruno Lina; Roland Marquet
The genome of influenza A viruses (IAV) is split into eight viral RNAs (vRNAs) that are encapsidated as viral ribonucleoproteins. The existence of a segment-specific packaging mechanism is well established, but the molecular basis of this mechanism remains to be deciphered. Selective packaging could be mediated by direct interaction between the vRNA packaging regions, but such interactions have never been demonstrated in virions. Recently, we showed that the eight vRNAs of a human H3N2 IAV form a single interaction network in vitro that involves regions of the vRNAs known to contain packaging signals in the case of H1N1 IAV strains. Here, we show that the eight vRNAs of an avian H5N2 IAV also form a single network of interactions in vitro, but, interestingly, the interactions and the regions of the vRNAs they involve differ from those described for the human H3N2 virus. We identified the vRNA sequences involved in five of these interactions at the nucleotide level, and in two cases, we validated the existence of the interaction using compensatory mutations in the interacting sequences. Electron tomography also revealed significant differences in the interactions taking place between viral ribonucleoproteins in H5N2 and H3N2 virions, despite their canonical ‘7 + 1’ arrangement.
Vaccine | 2012
Emilie Fournier; Vincent Moules; Boris Essere; Jean-Christophe Paillart; Jean-Daniel Sirbat; Annie Cavalier; Jean-Paul Rolland; Daniel Thomas; Bruno Lina; Catherine Isel; Roland Marquet
The genome of influenza A viruses is comprised of eight negative-sense viral RNAs (vRNAs) that form viral ribonucleoproteins (vRNPs). In order to be infectious, an influenza A viral particle must encapsidate at least one copy of each of the vRNAs. Thus, even though genome segmentation is evolutionary advantageous, it undeniably complicates viral assembly, which is believed to occur through a selective mechanism that still remains to be understood. Using electron tomography 3D-reconstructions, we show that the eight vRNPs of an influenza A Moscow/10/99 (H3N2) virus are interconnected within a star-like structure as they emerge from a unique transition zone at the budding tip of the virions. Notably, this transition zone is thick enough to accommodate all described packaging signals. We also report that, in vitro, each vRNA segment is involved in a direct contact with at least one other vRNA partner, in a single network of intermolecular interactions. We show that in several cases, the regions involved in vRNA/vRNA interactions overlap with previously identified packaging signals. Our results thus provide support for the involvement of RNA/RNA interactions in the selection and specific packaging of influenza A genomic RNAs, which appear embedded into an organised supramolecular complex likely held together by direct base-pairings between packaging signals.
Viruses | 2010
Catherine Isel; Chantal Ehresmann; Roland Marquet
Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.
Journal of Biological Chemistry | 2015
Valérie Vivet-Boudou; Catherine Isel; Yazan El Safadi; Redmond P. Smyth; Géraldine Laumond; Christiane Moog; Roland Marquet
Background: Lethal mutagenesis is an antiviral strategy. Results: Nucleoside analogue mutagenicity is correlated to base pair stability and the ability to function as a template during reverse transcription. Conclusion: Two simple biophysical/biochemical assays predict mutagenicity of nucleoside analogues. Significance: Mutagenicity of anti-HIV-1 compounds can be reliably predicted in vitro without labor-intensive and costly in cellula tests. Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of “lethal mutagenesis” that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively.
Retrovirology | 2009
Luke Meredith; Céline Ducloux; Catherine Isel; Roland Marquet; David Harrich
Here we provide strong evidence that a highly conserved stem loop structure in the U5 region of the HIV-1 RNA leader harbours a repressor of reverse transcription (RRT). We showed that two sequences in U5, at +143-145 and +151-153, are essential for RRT function. Mutation of either site strongly and unexpectedly increased endogenous reverse transcription, and cell infection assays showed that both mutations dramatically increased negative strand strong stop DNA synthesis. Early, late, 1-LTR and 2-LTR reverse transcription products were present proportionally, indicating that the downstream reverse transcription events were not affected. In vitro structural probing of the wild type and mutant RNA revealed an unexpected destabilization effect of the mutations on the whole U5 stem loop, which would explain the loss of regulation of reverse transcription. This functional effect was not observed in vitro, where, in the absence of viral proteins other than RT and cellular factors, all RNA performed similarly. These U5 mutations decreased virus replication in Jurkat and primary T-cells, which could be attributed to a marked defect in viral integration. Analysis of 1-LTR and 2-LTR circular DNA isolated from infected cells revealed that substantial deletions were present, indicating that the viral DNA was degraded by cellular nucleases. Together, our experiments suggest that regulated reverse transcription initiation is essential to allow synthesis of the viral DNA in a cellular environment that supports the assembly of a functional HIV-1 pre-integration complex, which also protects the proviral DNA from cellular degradation processes.
Biochimie | 2012
Céline Ducloux; Marylène Mougel; Valérie Goldschmidt; Ludovic Didierlaurent; Roland Marquet; Catherine Isel
Treatment of HIV-1 with nucleoside reverse transcription inhibitors leads to the emergence of resistance mutations in the reverse transcriptase (RT) gene. Resistance to 3-azido-3-deoxythymidine (AZT) and to a lesser extent to 2-3-didehydro-2-3-dideoxythymidine is mediated by phosphorolytic excision of the chain terminator. Wild-type RT excises AZT by pyrophosphorolysis, while thymidine-associated resistance mutations in RT (TAMs) favour ATP as the donor substrate. However, in vitro, resistant RT still uses pyrophosphate more efficiently than ATP. We performed in vitro (-) strong-stop DNA synthesis experiments, with wild-type and AZT-resistant HIV-1 RTs, in the presence of physiologically relevant pyrophosphate and/or ATP concentrations and found that in the presence of pyrophosphate, ATP and AZTTP, TAMs do not enhance in vitro (-) strong-stop DNA synthesis. We hypothesized that utilisation of ATP in vivo is driven by intrinsic low pyrophosphate concentrations within the reverse transcription complex, which could be explained by the packaging of a cellular pyrophosphatase. We showed that over-expressed flagged-pyrophosphatase was associated with HIV-1 viral-like particles. In addition, we demonstrated that when HIV-1 particles were purified in order to avoid cellular microvesicle contamination, a pyrophosphatase activity was specifically associated to them. The presence of a pyrophosphatase activity in close proximity to the reverse transcription complex is most likely advantageous to the virus, even in the absence of any drug pressure.
Retrovirology | 2009
Luke Meredith; Céline Ducloux; Catherine Isel; Roland Marquet; David Harrich
© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons. org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Retraction Note to: Retrovirology 2009, 6(Suppl 2):O14 doi:10.1186/1742‐4690‐6‐S2‐O14 The authors are retracting this abstract [1]. The preliminary data reported were presented at the “Frontiers of Retrovirology: Complex Retroviruses, Retroelements and Their Hosts”, in September 2009. Subsequently, the authors have been unable to reproduce key cell culture data and have discontinued this project. All of the authors agree with this retraction.