Catherine Juste
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catherine Juste.
Immunity | 2014
Emelyne Lécuyer; Sabine Rakotobe; Hélène Lengliné-Garnier; Corinne Lebreton; Marion Picard; Catherine Juste; Rémi Fritzen; Gérard Eberl; Kathy D. McCoy; Andrew J. Macpherson; Claude-Agnès Reynaud; Nadine Cerf-Bensussan; Valérie Gaboriau-Routhiau
Segmented filamentous bacterium (SFB) is a symbiont that drives postnatal maturation of gut adaptive immune responses. In contrast to nonpathogenic E. coli, SFB stimulated vigorous development of Peyers patches germinal centers but paradoxically induced only a low frequency of specific immunoglobulin A (IgA)-secreting cells with delayed accumulation of somatic mutations. Moreover, blocking Peyers patch development abolished IgA responses to E. coli, but not to SFB. Indeed, SFB stimulated the postnatal development of isolated lymphoid follicles and tertiary lymphoid tissue, which substituted for Peyers patches as inductive sites for intestinal IgA and SFB-specific T helper 17 (Th17) cell responses. Strikingly, in mice depleted of gut organized lymphoid tissue, SFB still induced a substantial but nonspecific intestinal Th17 cell response. These results demonstrate that SFB has the remarkable capacity to induce and stimulate multiple types of intestinal lymphoid tissues that cooperate to generate potent IgA and Th17 cell responses displaying only limited target specificity.
Cell Metabolism | 2015
Saeed Shoaie; Pouyan Ghaffari; Petia Kovatcheva-Datchary; Adil Mardinoglu; Partho Sen; Estelle Pujos-Guillot; Tomas de Wouters; Catherine Juste; Salwa Rizkalla; Julien Chilloux; Lesley Hoyles; Jeremy K. Nicholson; Joël Doré; Marc E. Dumas; Karine Clément; Fredrik Bäckhed; Jens Nielsen
The human gut microbiome is known to be associated with various human disorders, but a major challenge is to go beyond association studies and elucidate causalities. Mathematical modeling of the human gut microbiome at a genome scale is a useful tool to decipher microbe-microbe, diet-microbe and microbe-host interactions. Here, we describe the CASINO (Community And Systems-level INteractive Optimization) toolbox, a comprehensive computational platform for analysis of microbial communities through metabolic modeling. We first validated the toolbox by simulating and testing the performance of single bacteria and whole communities in vitro. Focusing on metabolic interactions between the diet, gut microbiota, and host metabolism, we demonstrated the predictive power of the toolbox in a diet-intervention study of 45 obese and overweight individuals and validated our predictions by fecal and blood metabolomics data. Thus, modeling could quantitatively describe altered fecal and serum amino acid levels in response to diet intervention.
BMC Genomics | 2011
Koos Rooijers; Carolin Kolmeder; Catherine Juste; Joël Doré; Mark de Been; Pilar Galan; Christian Beauvallet; Willem M. de Vos; Peter J. Schaap
BackgroundPeptide spectrum matching (PSM) is the standard method in shotgun proteomics data analysis. It relies on the availability of an accurate and complete sample proteome that is used to make interpretation of the spectra feasible. Although this procedure has proven to be effective in many proteomics studies, the approach has limitations when applied on complex samples of microbial communities, such as those found in the human intestinal tract. Metagenome studies have indicated that the human intestinal microbiome contains over 100 times more genes than the human genome and it has been estimated that this ecosystem contains over 5000 bacterial species. The genomes of the vast majority of these species have not yet been sequenced and hence their proteomes remain unknown. To enable data analysis of shotgun proteomics data using PSM, and circumvent the lack of a defined matched metaproteome, an iterative workflow was developed that is based on a synthetic metaproteome and the developing metagenomic databases that are both representative for but not necessarily originating from the sample of interest.ResultsTwo human fecal samples for which metagenomic data had been collected, were analyzed for their metaproteome using liquid chromatography-mass spectrometry and used to benchmark the developed iterative workflow to other methods. The results show that the developed method is able to detect over 3,000 peptides per fecal sample from the spectral data by circumventing the lack of a defined proteome without naive translation of matched metagenomes and cross-species peptide identification.ConclusionsThe developed iterative workflow achieved an approximate two-fold increase in the amount of identified spectra at a false discovery rate of 1% and can be applied in metaproteomic studies of the human intestinal tract or other complex ecosystems.
Analytical Biochemistry | 2009
Xianfu Gao; Estelle Pujos-Guillot; Jean-François Martin; Pilar Galan; Catherine Juste; Wei Jia; Jean-Louis Sébédio
Fecal water is a complex mixture of various metabolites with a wide range of physicochemical properties and boiling points. The analytical method developed here provides a qualitative and quantitative gas chromatography/mass spectrometry (GC/MS) analysis, with high sensitivity and efficiency, coupled with derivatization of ethyl chloroformate in aqueous medium. The water/ethanol/pyridine ratio was optimized to 12:6:1, and a two-step derivatization with an initial pH regulation of 0.1M sodium bicarbonate was developed. The deionized water exhibited better extraction efficiency for fecal water compounds than did acidified and alkalized water. Furthermore, more amino acids were extracted from frozen fecal samples than from fresh samples based on multivariate statistical analysis and univariate statistical validation on GC/MS data. Method validation by 34 reference standards and fecal water samples showed a correlation coefficient higher than 0.99 for each of the standards, and the limit of detection (LOD) was from 10 to 500pg on-column for most of the standards. The analytical equipment exhibited excellent repeatability, with the relative standard deviation (RSD) lower than 4% for standards and lower than 7% for fecal water. The derivatization method also demonstrated good repeatability, with the RSD lower than 6.4% for standards (except 3,4-dihydroxyphenylacetic acid) and lower than 10% for fecal water (except dicarboxylic acids). The qualitative means by searching the electron impact (EI) mass spectral database, chemical ionization (CI) mass spectra validation, and reference standards comparison totally identified and structurally confirmed 73 compounds, and the fecal water compounds of healthy humans were also quantified. This protocol shows a promising application in metabolome analysis based on human fecal water samples.
Applied and Environmental Microbiology | 2002
Sophie Drouault; Catherine Juste; Philippe Marteau; Pierre Renault; Gérard Corthier
ABSTRACT The Staphylococcus hyicus lip gene was cloned in Lactococcus lactis. Pancreatic insufficiency was induced by ligation of the pancreatic duct in pigs. In pigs who had undergone pancreatic ligation, the coefficient of fat absorption was higher after consumption of lipase-expressing L. lactis (91.9% ± 3.7%) than that after consumption of the inactive control strain (78.4% ± 2.4%).
Gut | 2014
Catherine Juste; David P. Kreil; Christian Beauvallet; Alain Guillot; Sebastian Vaca; Christine Carapito; Stanislas Mondot; Peter Sykacek; Harry Sokol; Florence Blon; Pascale Lepercq; Florence Levenez; Benoît Valot; Wilfrid Carré; Valentin Loux; Nicolas Pons; Olivier David; Brigitte Schaeffer; Patricia Lepage; Patrice Martin; Véronique Monnet; Philippe Seksik; Laurent Beaugerie; S. Dusko Ehrlich; Jean-François Gibrat; Alain Van Dorsselaer; Joël Doré
Objective No Crohn’s disease (CD) molecular maker has advanced to clinical use, and independent lines of evidence support a central role of the gut microbial community in CD. Here we explore the feasibility of extracting bacterial protein signals relevant to CD, by interrogating myriads of intestinal bacterial proteomes from a small number of patients and healthy controls. Design We first developed and validated a workflow—including extraction of microbial communities, two-dimensional difference gel electrophoresis (2D-DIGE), and LC-MS/MS—to discover protein signals from CD-associated gut microbial communities. Then we used selected reaction monitoring (SRM) to confirm a set of candidates. In parallel, we used 16S rRNA gene sequencing for an integrated analysis of gut ecosystem structure and functions. Results Our 2D-DIGE-based discovery approach revealed an imbalance of intestinal bacterial functions in CD. Many proteins, largely derived from Bacteroides species, were over-represented, while under-represented proteins were mostly from Firmicutes and some Prevotella members. Most overabundant proteins could be confirmed using SRM. They correspond to functions allowing opportunistic pathogens to colonise the mucus layers, breach the host barriers and invade the mucosae, which could still be aggravated by decreased host-derived pancreatic zymogen granule membrane protein GP2 in CD patients. Moreover, although the abundance of most protein groups reflected that of related bacterial populations, we found a specific independent regulation of bacteria-derived cell envelope proteins. Conclusions This study provides the first evidence that quantifiable bacterial protein signals are associated with CD, which can have a profound impact on future molecular diagnosis.
FEMS Microbiology Ecology | 2004
Philippe Gérard; Fabienne Béguet; Pascale Lepercq; Lionel Rigottier-Gois; Violaine Rochet; Claude Andrieux; Catherine Juste
The efficiency of microbial reduction of cholesterol to coprostanol in human gut is highly variable among population and mechanisms remain unexplored. In the present study, we investigated whether microbial communities and their cholesterol metabolism characteristics can be transferred to germ-free rats. Two groups of six, initially germ-free rats were associated with two different human microbiota, exhibiting high and low cholesterol-reducing activities. Four months after inoculation, enumeration of coprostanoligenic bacteria, fecal coprostanol levels and composition of the fecal microbial communities were studied in gnotobiotic rats and compared with those of the human donors. Combination of culture (most probable number enumeration of active bacteria) and biochemical approaches (extraction followed by gas chromatography of sterols) showed that gnotobiotic rats harbored a coprostanoligenic bacterial population level and exhibited coprostanoligenic activities similar to those of the corresponding human donor. On the other hand, molecular approaches (whole-cell hybridization with fluorescently labeled 16S rRNA-targeted oligonucleotide probes, and temporal temperature gradient gel electrophoresis of bacterial 16S rRNA gene amplicons) demonstrated that gnotobiotic rats reproduced a stable microbial community, close to the human donor microbiota at the group or genus levels but different at the dominant species level. These results suggest that the gnotobiotic rat model can be used to explore the still unknown human intestinal microbiota involved in luminal cholesterol metabolism, including regulation of expression of its activity and impact on health.
British Journal of Nutrition | 2007
Elise Alvaro; Claude Andrieux; Violaine Rochet; Lionel Rigottier-Gois; Pascale Lepercq; Malène Sutren; Pilar Galan; Yvonne Duval; Catherine Juste; Joël Doré
The objective of the present study was to evaluate the impact of a regular consumption of yogurt on the composition and metabolism of the human intestinal microbiota. Adult subjects were selected on the basis of daily food records and divided into two groups: yogurt consumers (at least 200 g yogurt consumed per d, n 30); non-consumers (no yogurt, n 21). Their faecal microbiota was analysed using molecular methods (in situ hybridisation and PCR amplification combined with separation by denaturing gel electrophoresis) and its metabolic characteristics were assessed by measuring glycosidase, P-glucuronidase and reductase activities and profiling SCFA, neutral sterols and bile acids. The yogurt starter Lactobacillus delbrueckii ssp. bulgaricus (identity confirmed by 16S rRNA sequencing) was detected in 73% of faecal samples from fermented milk consumers v. 28% from non-consumers (P=0.003). In yogurt consumers, the level of Enterobacteriaceae was significantly lower (P=0.006) and 13-galactosidase activity was significantly increased (P=0.048). In addition, within this group, 3-galactosidase activity and the Bifidobacterium population were both positively correlated with the amount of fermented milk ingested (r 0.66, P<0.0001 and r 0.43, P=0.018, respectively). Apart from these effects, which can be considered beneficial to the host, no other major differences could be detected regarding the composition and metabolic activity of intestinal microbiota.
Applied and Environmental Microbiology | 2007
Philippe Gérard; Pascale Lepercq; Marion Leclerc; Françoise Gavini; Pierre Raibaud; Catherine Juste
ABSTRACT The microbial community in the human colon contains bacteria that reduce cholesterol to coprostanol, but the species responsible for this conversion are still unknown. We describe here the first isolation and characterization of a cholesterol-reducing bacterium of human intestinal origin. Strain D8 was isolated from a 10−8 dilution of a fresh stool sample provided by a senior male volunteer with a high capacity to reduce luminal cholesterol to coprostanol. Cholesterol-to-coprostanol conversion by strain D8 started on the third day, while cells were in stationary phase, and was almost complete after 7 days. Intermediate products (4-cholesten-3-one and coprostanone) were occasionally observed, suggesting an indirect pathway for cholesterol-to-coprostanol conversion. Resting-cell assays showed that strain D8 could reduce 1.5 μmol of cholesterol/mg bacterial protein/h. Strain D8 was a gram-negative, non-spore-forming, rod-shaped organism identified as a member of the genus Bacteroides closely related to Bacteroides vulgatus, based on its morphological and biochemical characteristics. The 16S rRNA gene sequence of strain D8 was most similar (>99.5%) to those of two isolates of the recently described species Bacteroides dorei. Phylogenetic tree construction confirmed that Bacteroides sp. strain D8 clustered within an independent clade together with these B. dorei strains. Nevertheless, no cholesterol-reducing activity could be detected in cultures of the B. dorei type strain. Based on Bacteroides group-specific PCR-temporal temperature gradient gel electrophoresis, there was no correlation between the presence of a band comigrating with the band of Bacteroides sp. strain D8 and cholesterol conversion in 11 human fecal samples, indicating that this strain is unlikely to be mainly responsible for cholesterol conversion in the human population.
Nutrition Research Reviews | 1989
T. Corring; Catherine Juste; Evelyne F. Lhoste
MECHANISMS OF PANCREATIC ADAPTATION , MOLECULAR REGULATION OF PANCREATIC ADAPTATION . Dietary changes and molecular adaptation . Peptides and molecular adaptation . BILIARY SECRETION A N D DIETARY FAT . BILE RESPONSE TO DIETARY FAT . Bile salts . Biliary phospholipids . Biliary cholesterol. . Relative proportions of biliary lipids : saturation of bile with cholesterol MECHANISMS OF BILE RESPONSE TO DIETARY FAT . . BILIARY SECRETION A N D DIETARY FIBRE . BILE RESPONSE TO DIETARY FIBRE . Choledocal secretion . Bile acid pool. . Bile acid metabolism . MECHANISMS OF BILE RESPONSE TO DIETARY FIBRE . CONCLUSIONS , REFERENCES . . 161 . 162 . 162 . 163 . 165 . 165 . 167 . 168 . 168 . 168 . 169 . 169 . 170 . 170 . 171 . 171 . 171 . 172 . 173 173 . 175 175