Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine Lorgeoux is active.

Publication


Featured researches published by Catherine Lorgeoux.


Water Research | 2012

Towards the determination of an optimal scale for stormwater quality management: micropollutants in a small residential catchment.

Adèle Bressy; Marie-Christine Gromaire; Catherine Lorgeoux; M. Saad; Florent Leroy; Ghassan Chebbo

Stormwater and atmospheric deposits were collected on a small residential urban catchment (0.8 ha) near Paris in order to determine the levels of certain micropollutants (using a preliminary scan of 69 contaminants, followed by a more detailed quantification of PAHs, PCBs, alkylphenols and metals). Atmospheric inputs accounted for only 10%-38% of the stormwater contamination (except for PCBs), thus indicating substantial release within the catchment. On this small upstream catchment however, stormwater contamination is significantly lower than that observed downstream in storm sewers on larger adjacent urban catchments with similar land uses. These results likely stem from cross-contamination activity during transfers inside the sewer system and underscore the advantages of runoff management strategies at the source for controlling stormwater pollutant loads. Moreover, it has been shown that both contamination levels and contaminant speciation evolve with the scale of the catchment, in correlation with a large fraction of dissolved contaminants in upstream runoff, which differs from what has been traditionally assumed for stormwater. Consequently, the choice of treatment device/protocol must be adapted to the management scale as well as to the targeted type of contaminant.


Environmental Pollution | 2013

Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: Consequences on biodegradation

Aurélie Cébron; Pierre Faure; Catherine Lorgeoux; Stéphanie Ouvrard; Corinne Leyval

Although high PAH content and detection of PAH-degraders, the PAH biodegradation is limited in aged-contaminated soils due to low PAH availability (i.e., 1%). Here, we tried to experimentally increase the soil PAH availability by keeping both soil properties and contamination composition. Organic extract was first removed and then re-incorporated in the raw soil as fresh contaminants. Though drastic, this procedure only allowed a 6-time increase in the PAH availability suggesting that the organic constituents more than ageing were responsible for low availability. In the re-contaminated soil, the mineralization rate was twice more important, the proportion of 5-6 cycles PAH was higher indicating a preferential degradation of lower molecular weight PAH. The extraction treatment induced bacterial and fungal community structures modifications, Pseudomonas and Fusarium solani species were favoured, and the relative quantity of fungi increased. In re-contaminated soil the percentage of PAH-dioxygenase gene increased, with 10 times more Gram negative representatives.


Environmental Pollution | 2012

Analysis of quaternary ammonium compounds in urban stormwater samples

Antoine Van de Voorde; Catherine Lorgeoux; Marie-Christine Gromaire; Ghassan Chebbo

A method for benzalkonium analysis has been developed to measure benzalkonium concentration in dissolved and particulate fractions from urban runoff samples. The analysis was performed by liquid chromatography coupled with mass spectrometry (LC-MS/MS). The dissolved matrix was extracted by Solid Phase Extraction (SPE), with cationic exchange and the particles by microwave extraction with acidified methanol. Recovery percentages were closed to 100% for benzalkonium C12 and C14. The protocol was applied to roof runoff samples collected after a roof demossing treatment, and to separative stormwater samples from a 200 ha catchment. The results illustrate an important contamination of the roof runoff, with a maximum concentration close to 27 mg/L during the first rain. The benzalkonium concentration (sum of C12 and C14) stayed high (up to 1 mg/L) even 5 months after the treatment. Benzalkonium concentration measured in stormwaters was low (0.2 μg/L) but with contaminated suspended solids (up to 80 μg/g).


Environmental Science and Pollution Research | 2015

Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.

Aurélie Cébron; Thierry Beguiristain; Jeanne Bongoua-Devisme; Jérémie Denonfoux; Pierre Faure; Catherine Lorgeoux; Stéphanie Ouvrard; Nicolas Parisot; Pierre Peyret; Corinne Leyval

The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the development of PAH-degrading bacteria holding Gram-negative PAH-ring hydroxylating dioxygenase, catechol-1,2-dioxygenase and catechol-2,3-dioxygenase genes. Regarding the total community structure, bacteria closely related to Thiobacillus (β-Proteobacteria) and Steroidobacter (γ-Proteobacteria) genera were favoured by wood sawdust amendment. In both soils, plant rhizospheres induced the development of fungi belonging to Ascomycota and related to Alternaria and Fusarium genera. Bacteria closely related to Luteolibacter (Verrucomicrobia) and Microbacterium (Actinobacteria) were favoured in alfalfa and ryegrass rhizosphere.


Chemosphere | 2008

Polycyclic aromatic hydrocarbon sampling in wastewaters using semipermeable membrane devices: Accuracy of time-weighted average concentration estimations of truly dissolved compounds

Catherine Gourlay-Francé; Catherine Lorgeoux; Marie-Hélène Tusseau-Vuillemin

Semipermeable membrane devices (SPMDs) previously spiked with performance reference compounds were exposed in wastewater. After 6 days of exposure, 13 polycyclic aromatic hydrocarbons (PAHs) were quantified in SPMDs. Exchange rate constants and time-weighted average (TWA) concentrations of SPMD-available PAHs in water were calculated. The bias of using SPMDs to estimate an actual TWA concentration if the concentration in water fluctuates, as can be expected in wastewater, was studied with numerical simulations. The bias increased with the exchange rate constant. However, most exchange rate constants evaluated in SPMDs exposed in wastewater were small enough for SPMDs to estimate a TWA concentration of PAHs even when the water concentration varied. TWA-SPMD-available concentrations were always below total dissolved (operationally defined as 0.7 microm) concentrations, indicating that part of the dissolved PAHs was not available for sampling. In situ partitioning coefficients K(DOC) were computed and found to be slightly higher than data from the literature. This confirms that only truly dissolved PAHs should be sampled by SPMDs in wastewater.


Environmental Science and Pollution Research | 2013

Alkylphenolic compounds and bisphenol A contamination within a heavily urbanized area: case study of Paris

Mathieu Cladière; Johnny Gasperi; Catherine Lorgeoux; Céline Bonhomme; Vincent Rocher; Bruno Tassin

This study evaluates the influence of a heavily urbanized area (Paris Metropolitan area), on receiving water contamination by both bisphenol A (BPA) and alkylphenol ethoxylate (APE) biodegradation product. The study began by investigating concentrations within urban sources. In addition to the more commonly studied wastewater treatment plant effluent, wet weather urban sources (including combined sewer overflows, urban runoff, and total atmospheric fallout) were considered. The initial results highlight a significant contamination of all urban sources (from a few nanograms per liter in atmospheric fallout to several micrograms per liter in the other sources) with clearly distinguishable distribution patterns. Secondly, concentration changes along the Seine River from upstream of the Paris Metropolitan area to downstream were investigated. While the concentrations of BPA and nonylphenoxy acetic acid (NP1EC) increase substantially due to urban sources, the 4-nonylphenol concentrations remain homogeneous along the Seine. These results suggest a broad dissemination of 4-nonylphenol at the scale of the Seine River basin. Moreover, the relationship between pollutant concentrations and Seine River flow was assessed both upstream and downstream of the Paris conurbation. Consequently, a sharp decrease in dissolved NP1EC concentrations relative to Seine River flow underscores the influence of single-point urban pollution on Seine River contamination. Conversely, dissolved 4-nonylphenol concentrations serve to reinforce the hypothesis of its widespread presence at the Seine River basin scale.


Water Science and Technology | 2011

Alkylphenols in atmospheric depositions and urban runoff

Adèle Bressy; Marie-Christine Gromaire; Catherine Lorgeoux; Ghassan Chebbo

A sampling campaign was conducted in order to determine alkylphenol (AP) concentrations in stormwater as well as potential AP sources in suburban environments. An analytical procedure was developed to quantify APs in bulk atmospheric deposition, building runoff, road runoff and stormwater. Both nonylphenols and octylphenols could be quantified in each sample. Median stormwater concentrations amounted to: 470 ng/l for nonylphenols, and 36 ng/l for octylphenols. These concentrations are 3 times higher than those found in atmospheric deposition, thus proving that local human activity constitutes a significant source of contamination. The contributions of the various sources to stormwater have been assessed from mass balances at the catchment scale. 70% of AP mass in stormwater originates from building and road emissions. Annual AP fluxes have been extrapolated from the total AP mass measured over our sampling periods for atmospheric depositions (44 to 84 µgNP/m(2)/yr) and stormwater (100 to 190 µgNP/m(2)/yr). Moreover, since APs were mainly found in the dissolved fraction, runoff treatment devices based on settling are unlikely to be very efficient.


Water Science and Technology | 2010

Fate and spatial variations of polybrominated diphenyl ethers in the deposition within a heavily urbanized area: case of Paris (France)

B. Muresan; Catherine Lorgeoux; Johnny Gasperi; Régis Moilleron

In this paper, we present the first results on the geochemical cycle of PolyBrominated Diphenyl Ethers (or PBDE) in the Paris Region (France). In order to provide information about the distribution and mobility of eight PBDE congeners, we first determined the level of contamination of different environmental compartments: i.e. atmosphere, soils and waters. Atmospheric PBDE deposition was estimated from a site located in the centre of Paris. Surface soils (0-10 cm) were collected from multiple wooded, rural and urban locations through the Paris Region (12,000 km²). To complete our investigation, we measured PBDE concentrations/contents in the runoff from an urban catchment and settleable particles from the Seine River. Hence, gained results showed that in the superficial soils, the highest concentrations of highly brominated congeners were measured in the vicinity of the most urbanized areas whereas less brominated congeners were widespread in the whole Paris Region. This could be explained by the higher affinity of highly brominated congeners for the solid phase substrata coupled with the fact that the atmospheric deposition occurred mainly through particle deposition (close to 90% of the total atmospheric deposition). To the opposite, the less brominated congeners from the superficial soils were readily transferred to the dissolved phase of runoff and could reach more distant terrestrial and aquatic systems. Finally, a mass transfer was established at the scale of the Paris metropolitan city (105 km²). It showed that the cycle of PBDE in this particular urban area is highly dynamic with multiple sources and sinks, and rapid transfers between the ecosystem compartments.


Journal of Hazardous Materials | 2015

Effect of pre-heating on the chemical oxidation efficiency: implications for the PAH availability measurement in contaminated soils.

Coralie Biache; Catherine Lorgeoux; Sitraka Andriatsihoarana; Stéfan Colombano; Pierre Faure

Three chemical oxidation treatments (KMnO4, H2O2 and Fenton-like) were applied on three PAH-contaminated soils presenting different properties to determine the potential use of these treatments to evaluate the available PAH fraction. In order to increase the available fraction, a pre-heating (100 °C under N2 for one week) was also applied on the samples prior oxidant addition. PAH and extractable organic matter contents were determined before and after treatment applications. KMnO4 was efficient to degrade PAHs in all the soil samples and the pre-heating slightly improved its efficiency. H2O2 and Fenton-like treatments presented low efficiency to degrade PAH in the soil presenting poor PAH availability, however, the PAH degradation rates were improved with the pre-heating. Consequently H2O2-based treatments (including Fenton-like) are highly sensitive to contaminant availability and seem to be valid methods to estimate the available PAH fraction in contaminated soils.


Water Science and Technology | 2012

Removal of alkylphenols and polybromodiphenylethers by a biofiltration treatment plant during dry and wet-weather periods

Solène Gilbert; Johnny Gasperi; Vincent Rocher; Catherine Lorgeoux; Ghassan Chebbo

This paper investigates the occurrence of alkylphenols (APs) and polybromodiphenylethers (PBDEs) in raw wastewater during dry and wet-weather periods, and their removal by physico-chemical lamellar settling and biofiltration techniques. Due to in-sewer deposit erosion and, to a lesser extent, to external inputs, raw effluents exhibit from 1.5 to 5 times higher AP and PBDE concentrations during wet periods compared with dry ones. The lamellar settler obtains high removal of APs and PBDEs under both dry and wet-weather flows (>53% for Σ(6)AP and >89% for Σ(4)PBDE), confirming the insensitivity of this technique to varying influent conditions. Indeed, despite the higher pollutant concentrations observed in raw effluents under wet-weather flows, adjusting the addition of coagulant-flocculent allows for efficient removal. By combining physical and biological processes, the biofiltration unit treats nutrient pollution, as well as Σ(6)AP and Σ(4)PBDE contamination (58 ± 5% and 75 ± 6% respectively). Although the operating conditions of the biofiltration unit are modified during wet periods, the performance in nutrient pollution, APs and light PBDE congeners remains high. Nevertheless, lower efficiency has been noted in nitrogen pollution, i.e. no denitrification occurs, and BDE-209 (not removed during wet-weather periods). In conclusion, this study demonstrates that the combination of both techniques treats AP and PBDE pollution efficiently during dry periods, but that they are also suitable for stormwater treatment.

Collaboration


Dive into the Catherine Lorgeoux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Tassin

École des ponts ParisTech

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adèle Bressy

École des ponts ParisTech

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge