Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Coralie Biache is active.

Publication


Featured researches published by Coralie Biache.


Environmental Pollution | 2008

Effects of thermal desorption on the composition of two coking plant soils: impact on solvent extractable organic compounds and metal bioavailability.

Coralie Biache; Laurence Mansuy-Huault; Pierre Faure; Colette Munier-Lamy; Corinne Leyval

To evaluate the efficiency and the influence of thermal desorption on the soil organic compartment, contaminated soils from coking plant sites (NM and H) were compared to their counterparts treated with thermodesorption. The extractable organic matter, and the metal content and distribution with soil compartments were studied. In both thermodesorbed soils, PAH (polycyclic aromatic hydrocarbon) degradation exceeded 90%. However, the thermal desorption led not only to a volatilization of the organic compounds but also to the condensation of extractable organic matter. The treatments only affected the Fe and Zn distribution within the more stable fractions, whereas the organic compound degradation did not affect their mobility and availability.


International Journal of Phytoremediation | 2011

In Situ Assessment of Phytotechnologies for Multicontaminated Soil Management

Stéphanie Ouvrard; Christophe Barnier; Pascale Bauda; Thierry Beguiristain; Coralie Biache; Marc Bonnard; Cécile Caupert; Aurélie Cébron; Jérôme Cortet; Sylvie Cotelle; Marc Dazy; Pierre Faure; Jean-François Masfaraud; Johanne Nahmani; Françoise Palais; Pascal Poupin; Noële Raoult; Paule Vasseur; Jean-Louis Morel; Corinne Leyval

Due to human activities, large volumes of soils are contaminated with organic pollutants such as polycyclic aromatic hydrocarbons, and very often by metallic pollutants as well. Multipolluted soils are therefore a key concern for remediation. This work presents a long-term evaluation of the fate and environmental impact of the organic and metallic contaminants of an industrially polluted soil under natural and plant-assisted conditions. A field trial was followed for four years according to six treatments in four replicates: unplanted, planted with alfalfa with or without mycorrhizal inoculation, planted with Noccaea caerulescens, naturally colonized by indigenous plants, and thermally treated soil planted with alfalfa. Leaching water volumes and composition, PAH concentrations in soil and solutions, soil fauna and microbial diversity, soil and solution toxicity using standardized bioassays, plant biomass, mycorrhizal colonization, were monitored. Results showed that plant cover alone did not affect total contaminant concentrations in soil. However, it was most efficient in improving the contamination impact on the environment and in increasing the biological diversity. Leaching water quality remained an issue because of its high toxicity shown by micro-algae testing. In this matter, prior treatment of the soil by thermal desorption proved to be the only effective treatment.


Journal of Hazardous Materials | 2014

Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications.

Coralie Biache; Laurence Mansuy-Huault; Pierre Faure

Based on the isomer stability during their formation, PAH diagnostic ratios have been extensively used to determine PAH contamination origin. Nevertheless, it is known that these isomers do not present the same physicochemical properties and that reactions occurring during the transport from an atmospheric source induce changes in the diagnostic ratios. Yet, little is known about reactions occurring in soils contaminated by other sources such as coal tar and coal. Innovative batch experiments of abiotic oxidation and microbial incubations were performed to discriminate independently the influence of these two major processes occurring in soils on the diagnostic ratios of major PAH sources. Three samples were studied, a coking plant soil and two major PAH sources in this soil, namely coal and coal tar. The combustion signature of the coking plant soil showed the major influence of coal tar in the soil sample composition. Some of these ratios were drastically affected by oxidation and biodegradation processes inducing a change in the source signature. The coal tar signature changed to petrogenic source after oxidation with the anthracene/(anthracene+phenanthrene) ratio. According to this ratio, the initial petrogenic signature of the coal changed to a combustion signature after the biodegradation experiment.


Journal of Hazardous Materials | 2011

Low temperature oxidation of a coking plant soil organic matter and its major constituents: An experimental approach to simulate a long term evolution

Coralie Biache; Thierry Ghislain; Pierre Faure; Laurence Mansuy-Huault

In contaminated soils, several natural processes (biodegradation, oxidation, etc.) can induce degradation of organic pollutants. The aim of this work was to evaluate the impact of an abiotic low-temperature oxidation on a coking plant soil and its main organic constituents (coal, coke, coal tar and road asphalts) in order to understand its long term evolution. This natural process was experimentally reproduced by oxidizing the soil and isolated organic matrices at 100 °C during 180 days. The samples were analyzed by total organic carbon measurements and elemental analyses, and the solvent-extractable organic matter was quantified by GC-MS (gas chromatography-mass spectrometry). Oxidation experiments on coal, coal tar and coking plant soil samples lead to the decrease in polycyclic aromatic hydrocarbon (PAH) concentrations correlated to an incorporation of oxygen evidenced by the production of oxygenated PAHs. The increasing amount of polar macromolecules and the decrease in solvent-extractable organic matter suggest a molecular growth through ether/ester cross-linking. The chemical environment of organic compounds and the presence of a reactive mineral fraction are important parameters that improve the efficiency of oxidation. This work reveals that abiotic low temperature oxidation, can strongly contribute to pollutant removal especially by a stabilization process and should be considered in the long term evolution of a soil.


Water Research | 2013

The use of sterol distributions combined with compound specific isotope analyses as a tool to identify the origin of fecal contamination in rivers.

Coralie Biache; R. Paul Philp

The sterol distributions of 9 sediment samples from the Illinois River Basin (OK and AR, USA) were examined in order to identify the source of fecal contamination. The samples were extracted with organic solvent using sonication and the fractions containing the sterols were isolated and analyzed by gas chromatography-mass spectrometry. The sterol distributions of the Illinois River samples were dominated by phytosterols. They were compared to those of different animal feces and manures using a principal component analysis and correspondence appeared between the sediments and one group of chicken feces samples. Gas chromatography-isotope ratio mass spectrometry analyses were also performed to determine the δ(13)C values for the phytosterols and to get an indication of their origin based on the C(3)/C(4) plant signatures. The δ(13)C values obtained ranged from -30.6 ‰ to -17.4 ‰ (VPDB) corresponding to a mixed signature between C(3) and C(4) plants, indicating a C(4) plant contribution to the C(3) plant natural background. These observations indicate that a proportion of the phytosterols originated from chicken feces.


Journal of Hazardous Materials | 2015

Effect of pre-heating on the chemical oxidation efficiency: implications for the PAH availability measurement in contaminated soils.

Coralie Biache; Catherine Lorgeoux; Sitraka Andriatsihoarana; Stéfan Colombano; Pierre Faure

Three chemical oxidation treatments (KMnO4, H2O2 and Fenton-like) were applied on three PAH-contaminated soils presenting different properties to determine the potential use of these treatments to evaluate the available PAH fraction. In order to increase the available fraction, a pre-heating (100 °C under N2 for one week) was also applied on the samples prior oxidant addition. PAH and extractable organic matter contents were determined before and after treatment applications. KMnO4 was efficient to degrade PAHs in all the soil samples and the pre-heating slightly improved its efficiency. H2O2 and Fenton-like treatments presented low efficiency to degrade PAH in the soil presenting poor PAH availability, however, the PAH degradation rates were improved with the pre-heating. Consequently H2O2-based treatments (including Fenton-like) are highly sensitive to contaminant availability and seem to be valid methods to estimate the available PAH fraction in contaminated soils.


Science of The Total Environment | 2014

A Technosol as archives of organic matter related to past industrial activities

Hermine Huot; Pierre Faure; Coralie Biache; Catherine Lorgeoux; Marie-Odile Simonnot; Jean Louis Morel

To better understand formation, functioning and evolution of a Technosol developing on a former settling pond of iron industry under forest cover, organic matter (OM) of layers along the soil profile was investigated. Spectroscopic and molecular analyses of extractable OM gave information on OM origin and state of preservation. In the surface layer, OM fingerprints indicated fresh input from vegetation while they revealed well preserved anthropogenic compounds related to industrial processes in deeper layers. OM variability and distribution according to the layers recorded deposition cycles of industrial effluents into the pond. Thus, the Technosol can be considered as archives of past industrial activities. The preservation of anthropogenic OM could be connected with mineralogy, high metal contents and particular physical properties of the Technosol.


Environmental Science & Technology | 2010

Low-Temperature, Mineral-Catalyzed Air Oxidation: A Possible New Pathway for PAH Stabilization in Sediments and Soils

Thierry Ghislain; Pierre Faure; Coralie Biache; Raymond Michels

Reactivity of polycyclic aromatic hydrocarbons (PAHs) in the subsurface is of importance to environmental assessment, as they constitute a highly toxic hazard. Understanding their reactivity in the long term in natural recovering systems is thus a key issue. This article describes an experimental investigation on the air oxidation of fluoranthene (a PAH abundant in natural systems polluted by industrial coal use) at 100°C on different mineral substrates commonly found in soils and sediments (quartz sand, limestone, and clay). Results demonstrate that fluoranthene is readily oxidized in the presence of limestone and clay, leading to the formation of high molecular weight compounds and a carbonaceous residue as end product especially for clay experiments. As demonstrated elsewhere, the experimental conditions used permitted the reproduction of the geochemical pathway of organic matter observed under natural conditions. It is therefore suggested that low-temperature, mineral-catalyzed air oxidation is a mechanism relevant to the stabilization of PAHs in sediments and soils.


Journal of Hazardous Materials | 2017

Bioremediation of PAH-contamined soils: Consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance

Coralie Biache; Salma Ouali; Aurélie Cébron; Catherine Lorgeoux; Stéfan Colombano; Pierre Faure

A bioslurry batch experiment was carried out over five months on three polycyclic aromatic compound (PAC) contaminated soils to study the PAC (PAH and polar-PAC) behavior during soil incubation and to evaluate the impact of PAC contamination on the abundance of microbial communities and functional PAH-degrading populations. Organic matter characteristics and reactivity, assessed through solvent extractable organic matter and PAC contents, and soil organic matter mineralization were monitored during 5 months. Total bacteria and fungi, and PAH-ring hydroxylating dioxygenase genes were quantified. Results showed that PAHs and polar-PACs were degraded with different degradation dynamics. Differences in degradation rates were observed among the three soils depending on PAH distribution and availability. Overall, low molecular weight compounds were preferentially degraded. Degradation selectivity between isomers and structurally similar compounds was observed which could be used to check the efficiency of bioremediation processes. Bacterial communities were dominant over fungi and were most likely responsible for PAC degradation. Abundance of PAH-degrading bacteria increased during incubations, but their proportion in the bacterial communities tended to decrease. The accumulation of some oxygenated-PACs during the bioslurry experiment underlines the necessity to monitor these compounds during application of remediation treatment on PAH contaminated soils.


Environmental Science and Pollution Research | 2015

Evolution of dissolved organic matter during abiotic oxidation of coal tar—comparison with contaminated soils under natural attenuation

Ogier Hanser; Coralie Biache; Marine Boulangé; Stéphane Parant; Catherine Lorgeoux; David Billet; Raymond Michels; Pierre Faure

In former coal transformation plants (coking and gas ones), the major organic contamination of soils is coal tar, mainly composed of polycyclic aromatic compounds (PACs). Air oxidation of a fresh coal tar was chosen to simulate the abiotic natural attenuation impact on PAC-contaminated soils. Water-leaching experiments were subsequently performed on fresh and oxidized coal tars to study the influence of oxidation on dissolved organic matter (DOM) quality and quantity. The characterization of the DOM was performed using a combination of molecular and spectroscopic techniques (high-performance liquid chromatography–size-exclusion chromatography (HPLC-SEC), 3D fluorescence, and gas chromatography coupled with mass spectrometry (GC–MS)) and compared with the DOM from contaminated soils sampled on the field exposed to natural attenuation for several decades. An increase in the oxygenated polycyclic aromatic compound concentrations was observed with abiotic oxidation both in the coal tar and the associated DOM. Polycyclic aromatic hydrocarbon concentrations in the leachates exceeded pure water solubility limits, suggesting that co-solvation with other soluble organic compounds occurred. Furthermore, emission excitation matrix analysis combined with synchronous fluorescence spectra interpretation and size-exclusion chromatography suggests that oxidation induced condensation reactions which were responsible for the formation of higher-molecular weight compounds and potentially mobilized by water. Thus, the current composition of the DOM in aged soils may at least partly result from (1) a depletion in lower-molecular weight compounds of the initial contamination stock and (2) an oxidative condensation leading to the formation of a higher-molecular weight fraction. Abiotic oxidation and water leaching may therefore be a significant combination contributing to the evolution of coal tar-contaminated soils under natural attenuation.

Collaboration


Dive into the Coralie Biache's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurence Mansuy-Huault

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Khalil Hanna

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salma Ouali

University of Lorraine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge