Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine M. Weitz is active.

Publication


Featured researches published by Catherine M. Weitz.


Geology | 2008

Opaline silica in young deposits on Mars

Ralph E. Milliken; Gregg A. Swayze; Raymond E. Arvidson; Janice L. Bishop; Roger N. Clark; B. L. Ehlmann; Robert O. Green; John P. Grotzinger; Richard V. Morris; Scott L. Murchie; John F. Mustard; Catherine M. Weitz

High spatial and spectral resolution reflectance data acquired by the Mars Reconnaissance Orbiter Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument reveal the presence of H_2O- and SiOH-bearing phases on the Martian surface. The spectra are most consistent with opaline silica and glass altered to various degrees, confirming predictions based on geochernicall experiments and models that amorphous silica should be a common weathering product of the basaltic Martian crust. These materials are associated with hydrated Fe sulfates, including H_3O-bearing jarosite, and are found in finely stratified deposits exposed on the floor of and on the plains surrounding the Valles Marineris canyon system. Stratigraphic relationships place the formation age of these deposits in the late Hesperian or possibly the Amazonian, implying that aqueous alteration continued to be an important and regionally extensive process on Mars during that time.


Nature | 2005

Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site

R. Sullivan; Donald J. Banfield; James F. Bell; Wendy M. Calvin; David A. Fike; M. P. Golombek; Ronald Greeley; John P. Grotzinger; K. E. Herkenhoff; Douglas J. Jerolmack; M. C. Malin; D. W. Ming; L. A. Soderblom; S. W. Squyres; Shane D. Thompson; Wesley Andres Watters; Catherine M. Weitz; Albert S. Yen

The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunitys landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s-1, most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.


Science | 2004

Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site

L. A. Soderblom; Robert C. Anderson; Raymond E. Arvidson; James F. Bell; Nathalie A. Cabrol; Wendy M. Calvin; Philip R. Christensen; B. C. Clark; T. Economou; B. L. Ehlmann; William H. Farrand; David A. Fike; Ralf Gellert; Timothy D. Glotch; M. Golombek; Ronald Greeley; John P. Grotzinger; K. E. Herkenhoff; Douglas J. Jerolmack; James Richard Johnson; Brad L. Jolliff; G. Klingelhöfer; Andrew H. Knoll; Z. A. Learner; R. Li; M. C. Malin; Scott M. McLennan; Harry Y. McSween; D. W. Ming; Richard V. Morris

The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.


Science | 2007

A Closer Look at Water-Related Geologic Activity on Mars

Alfred S. McEwen; Carl J. Hansen; W. A. Delamere; Eric M. Eliason; Kenneth E. Herkenhoff; Laszlo P. Keszthelyi; V. C. Gulick; R. L. Kirk; Michael T. Mellon; John A. Grant; Nicolas Thomas; Catherine M. Weitz; Steven W. Squyres; Nathan T. Bridges; Scott L. Murchie; F. P. Seelos; Kimberly D. Seelos; Chris H. Okubo; Moses Pollen Milazzo; Livio L. Tornabene; Windy L. Jaeger; Shane Byrne; Patrick Russell; J. L. Griffes; Sara Martínez-Alonso; A. Davatzes; Frank C. Chuang; B. J. Thomson; Kathryn Elspeth Fishbaugh; Colin M. Dundas

Water has supposedly marked the surface of Mars and produced characteristic landforms. To understand the history of water on Mars, we take a close look at key locations with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter, reaching fine spatial scales of 25 to 32 centimeters per pixel. Boulders ranging up to ∼2 meters in diameter are ubiquitous in the middle to high latitudes, which include deposits previously interpreted as finegrained ocean sediments or dusty snow. Bright gully deposits identify six locations with very recent activity, but these lie on steep (20° to 35°) slopes where dry mass wasting could occur. Thus, we cannot confirm the reality of ancient oceans or water in active gullies but do see evidence of fluvial modification of geologically recent mid-latitude gullies and equatorial impact craters.


Science | 2004

Evidence from Opportunity's microscopic imager for water on Meridiani Planum

K. E. Herkenhoff; S. W. Squyres; Raymond E. Arvidson; D. S. Bass; James F. Bell; P. Bertelsen; B. L. Ehlmann; William H. Farrand; Lisa R. Gaddis; Ronald Greeley; John P. Grotzinger; Alexander G. Hayes; S. F. Hviid; James Richard Johnson; Bradley L. Jolliff; K. M. Kinch; Andrew H. Knoll; M. B. Madsen; J. N. Maki; Scott M. McLennan; Harry Y. McSween; D. W. Ming; James R Rice; L. Richter; M. Sims; Peter W. H. Smith; L. A. Soderblom; N. Spanovich; R. Sullivan; Shane D. Thompson

The Microscopic Imager on the Opportunity rover analyzed textures of soils and rocks at Meridiani Planum at a scale of 31 micrometers per pixel. The uppermost millimeter of some soils is weakly cemented, whereas other soils show little evidence of cohesion. Rock outcrops are laminated on a millimeter scale; image mosaics of cross-stratification suggest that some sediments were deposited by flowing water. Vugs in some outcrop faces are probably molds formed by dissolution of relatively soluble minerals during diagenesis. Microscopic images support the hypothesis that hematite-rich spherules observed in outcrops and soils also formed diagenetically as concretions.


Science | 2004

Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum

James F. Bell; S. W. Squyres; Raymond E. Arvidson; H. M. Arneson; D. S. Bass; Wendy M. Calvin; William H. Farrand; W. Goetz; M. P. Golombek; Ronald Greeley; John P. Grotzinger; Edward A. Guinness; Alexander G. Hayes; M. Y. H. Hubbard; K. E. Herkenhoff; M. J. Johnson; James Richard Johnson; Jonathan Joseph; K. M. Kinch; Mark T. Lemmon; R. Li; M. B. Madsen; J. N. Maki; M. C. Malin; E. McCartney; Scott M. McLennan; Harry Y. McSween; D. W. Ming; Richard V. Morris; E. Z. Noe Dobrea

Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron–rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.


Geology | 2008

HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars

John A. Grant; Rossman P. Irwin; John P. Grotzinger; Ralph E. Milliken; Livio L. Tornabene; Alfred S. McEwen; Catherine M. Weitz; Steven W. Squyres; Timothy D. Glotch; Brad J. Thomson

High Resolution Imaging Science Experiment (HiRISE) images of Holden crater, Mars, resolve impact megabreccia unconformably overlain by sediments deposited during two Noachian-age phases of aqueous activity. A lighter-toned lower unit exhibiting phyllosilicates was deposited in a long-lived, quiescent distal alluvial or lacustrine setting. An overlying darker-toned and often blocky upper unit drapes the sequence and was emplaced during later high-magnitude flooding as an impounded Uzboi Vallis lake overtopped the crater rim. The stratigraphy provides the first geologic context for phyllosilicate deposition during persistent wet and perhaps habitable conditions on early Mars.


Journal of Geophysical Research | 1992

Small volcanic edifices and volcanism in the plains of Venus

John E. Guest; Mark H. Bulmer; Jayne C. Aubele; Kathi K. Beratan; Ronald Greeley; James W. Head; Gregory A. Michaels; Catherine M. Weitz; Charles Wiles

The most widespread terrain type on Venus consists of volcanic lowland plains. Several styles of volcanism are represented in the plains. The most extensive volcanic units consist of flood lavas, the largest of which have volumes of the order of thousands of cubic kilometers. As with terrestrial flood lavas, they are inferred to have erupted at high effusion rates. They show a range of radar backscatter characteristics indicating different surface textures and ages. Small edifices on the plains occur mainly in clusters associated with fracture belts. The majority are shield volcanoes that may be up to a few tens of kilometers across but are generally 10 km or less in diameter. Volcanic cones have the same size range. Volcanic domes have diameters up to several tens of kilometers and volumes of the order of 100 km3. These are interpreted as being constructed of lava erupted with a relatively high effective viscosity and thus possibly composed of more silicic lava. For many domes, the flanks were unstable during and afte eruption and suffered gravity sliding that produced steep, scalloped outer margins. Because of the high atmospheric pressures on Venus, explosive activity is less likely to occur than on Earth. However, n a few plains areas there is evidence of pyroclastic deposits surrounding craters, indicating that volatile contents in some of the magmas may be high in comparison to Earth. The clusters of small volcanic edifices are considered to be analogous to plains volcanism, similar to that of the Snake River Plain of Idaho. There may also be analogues with terrestrial volcanic clusters associated with mid-oceanic ridges.


Journal of Geophysical Research | 1992

Aeolian features on Venus - Preliminary Magellan results

Ronald Greeley; Raymond E. Arvidson; Charles Elachi; Maureen A. Geringer; Jeffrey J. Plaut; R. Stephen Saunders; Gerald Schubert; Ellen R. Stofan; Eric J. P. Thouvenot; Stephen D. Wall; Catherine M. Weitz

Magellan synthetic aperture radar data reveal numerous surface features that are attributed to aeolian, or wind processes. Wind streaks are the most common aeolian feature. They consist of radar backscatter patterns that are high, low, or mixed in relation to the surface on which they occur. A data base of more than 3400 wind streaks shows that low backscatter linear forms (long, narrow streaks) are the most common and that most streaks occur between 17°S to 30°S and 5°N to 53°N on smooth plains. Moreover, most streaks are associated with deposits from certain impact craters and some tectonically deformed terrains. We infer that both of these geological settings provide fine particulate material that can be entrained by the low-velocity winds on Venus. Turbulence and wind patterns generated by the topographic features with which many streaks are associated can account for differences in particle distributions and in the patterns of the wind streaks. Thus, some high backscatter streaks are considered to be zones that are swept free of sedimentary particles to expose rough bedrock; other high backscatter streaks may be lag deposits of dense materials from which low-density grains have been removed (dense materials such as ilmenite or pyrite have dielectric properties that would produce high backscatter patterns). Wind streaks generally occur on slopes < 2° and tend to be oriented toward the equator, consistent with the Hadley model of atmospheric circulation. In addition to wind streaks, other aeolian features on Venus include yardangs(?) and dune fields. The Aglaonice dune field, centered at 25°S, 340°E, covers ∼1290 km^2 and is located in an ejecta flow channel from the Aglaonice impact crater. The Meshkenet dune field, located at 67°N, 90°E, covers ∼17,120 km^2 in a valley between Ishtar Terra and Meshkenet Tessera. Wind streaks associated with both dune fields suggest that the dunes are of transverse forms in which the dune crests are perpendicular to the prevailing winds. Dunes on Venus signal the presence of sand-size (∼60 to 2,000 μm) grains. The possible yardangs are found at 9°N, 60.5°E, about 300 km southeast of the crater Mead. Although most aeolian features are concentrated in smooth plains near the equator, the occurrence of wind streaks is widespread, and some have been found at all latitudes and elevations. They demonstrate that aeolian processes operate widely on Venus. The intensity of wind erosion and deposits, however, varies with locality and is dependent on the wind regime and supply of particles.


Journal of Geophysical Research | 1998

Lunar regional dark mantle deposits: Geologic, multispectral, and modeling studies

Catherine M. Weitz; James W. Head; Carle M. Pieters

Clementine five-channel UV-visible (UVVIS) data have been used to study seven regional dark mantle deposits (DMDs) on the Moon. The DMDs were mapped in distribution to determine their extent and stratigraphic relationship to other geologic units. Based upon the spectral properties for each DMD, the crystallization of the beads in each deposit was inferred and used to estimate cooling rates in the volcanic plumes that emplaced the deposits. Deposits with a high concentration of glasses reflect volcanic plumes that had low optical densities and high cooling rates, whereas deposits dominated by crystallized beads indicate plumes with slower cooling rates due to higher optical densities. Spectral data from each of the regional DMDs show that their glass:crystallized bead ratio can be estimated based upon their 415/750 and 750/950 nm values and comparison to laboratory spectra for the beads. Patches of young dark mantle in the Sinus Aestuum DMD represent one extreme with the bluest color (highest 415/750) and weakest glass band absorption (lowest 750/950) of all the DMDs. At the other extreme is the Aristarchus Plateau DMD with the reddest color and strongest glass band absorption. The other nearside DMDs, including Taurus-Littrow, Sulpicius Gallus, Rima Bode, and Mare Vaporum lie between these two extremes due to intermediate mixtures of the crystallized beads and glasses with other local soils. The Orientale Ring DMD on the western limb is dominated by volcanic glasses and is spectrally similar to the localized DMDs found in Alphonsus crater. We have identified a central vent for the Orientale Ring DMD and model the eruption as degassing of a near-surface dike to produce a 20-km-high umbrella-shaped plume with ejection velocities of 360 m/s and deposition of the glasses at an average radius of 80 km from the vent. Although we cannot identify the exact sources for the other regional DMDs (probably because they are buried beneath younger mare), the eruptions most likely resulted from dikes breaching the surface and producing a volcanic plume dominated by larger (greater than submillimeter) hot clasts that formed mare and sinuous rules. The small percent of clasts that form the volcanic beads are carried by the expanding gas cloud to large distances, in some cases >100 km, to produce the observed continuous regional DMDs. The lack of basalt samples that can be petrologically related to the volcanic glasses may be a result of their spatial separation, with the basalts flowing into the basins while the beads are deposited both into the basins and on the adjacent highlands.

Collaboration


Dive into the Catherine M. Weitz's collaboration.

Top Co-Authors

Avatar

Ronald Greeley

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Raymond E. Arvidson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James F. Bell

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Grotzinger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott L. Murchie

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge