Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine Philippe is active.

Publication


Featured researches published by Catherine Philippe.


Gut | 2013

Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice

Tiphaine Le Roy; M. Llopis; Patricia Lepage; Aurélia Bruneau; Claudia Bevilacqua; Patrice Martin; Catherine Philippe; Francine Walker; André Bado; Gabriel Perlemuter; Anne-Marie Cassard-Doulcier; Philippe Gérard

Objective Non-alcoholic fatty liver disease (NAFLD) is prevalent among obese people and is considered the hepatic manifestation of metabolic syndrome. However, not all obese individuals develop NAFLD. Our objective was to demonstrate the role of the gut microbiota in NAFLD development using transplantation experiments in mice. Design Two donor C57BL/6J mice were selected on the basis of their responses to a high-fat diet (HFD). Although both mice displayed similar body weight gain, one mouse, called the ‘responder’, developed hyperglycaemia and had a high plasma concentration of pro-inflammatory cytokines. The other, called a ‘non-responder’, was normoglycaemic and had a lower level of systemic inflammation. Germ-free mice were colonised with intestinal microbiota from either the responder or the non-responder and then fed the same HFD. Results Mice that received microbiota from different donors developed comparable obesity on the HFD. The responder-receiver (RR) group developed fasting hyperglycaemia and insulinaemia, whereas the non-responder-receiver (NRR) group remained normoglycaemic. In contrast to NRR mice, RR mice developed hepatic macrovesicular steatosis, which was confirmed by a higher liver concentration of triglycerides and increased expression of genes involved in de-novo lipogenesis. Pyrosequencing of the 16S ribosomal RNA genes revealed that RR and NRR mice had distinct gut microbiota including differences at the phylum, genera and species levels. Conclusions Differences in microbiota composition can determine response to a HFD in mice. These results further demonstrate that the gut microbiota contributes to the development of NAFLD independently of obesity.


Applied and Environmental Microbiology | 2005

Intestinal Bacterial Communities That Produce Active Estrogen-Like Compounds Enterodiol and Enterolactone in Humans

Thomas Clavel; Gemma Henderson; Carl-Alfred Alpert; Catherine Philippe; Lionel Rigottier-Gois; Joël Doré; Michael Blaut

ABSTRACT Lignans are dietary diphenolic compounds which require activation by intestinal bacteria to exert possible beneficial health effects. The intestinal ecosystem plays a crucial role in lignan metabolism, but the organisms involved are poorly described. To characterize the bacterial communities responsible for secoisolariciresinol (SECO) activation, i.e., the communities that produce the enterolignans enterodiol (ED) and enterolactone (EL), a study with 24 human subjects was undertaken. SECO activation was detected in all tested fecal samples. The intestinal bacteria involved in ED production were part of the dominant microbiota (6 × 108 CFU g−1), as revealed by most-probable-number enumerations. Conversely, organisms that catalyzed the formation of EL occurred at a mean concentration of approximately 3 × 105 CFU g−1. Women tended to have higher concentrations of both ED- and EL-producing organisms than men. Significantly larger amounts of EL were produced by fecal dilutions from individuals with moderate to high concentrations of EL-producing bacteria. Two organisms able to demethylate and dehydroxylate SECO were isolated from human feces. Based on 16S rRNA gene sequence analyses, they were named Peptostreptococcus productus SECO-Mt75m3 and Eggerthella lenta SECO-Mt75m2. A new 16S rRNA-targeted oligonucleotide probe specific for P. productus and related species was designed and further used in fluorescent in situ hybridization experiments, along with five additional group-specific probes. Significantly higher proportions of P. productus and related species (P = 0.012), as well as bacteria belonging to the Atopobium group (P = 0.035), were typical of individuals with moderate to high concentrations of EL-producing communities.


British Journal of Nutrition | 2007

Survival and metabolic activity of selected strains of Propionibacterium freudenreichii in the gastrointestinal tract of human microbiota-associated rats.

Annaı̈g Lan; Aurélia Bruneau; Catherine Philippe; Violaine Rochet; Annette Rouault; Christophe Hervé; Nathalie Roland; Gwénaël Jan

In addition to their use in cheese technology, dairy propionibacteria have been identified as potential probiotics. However, to have a probiotic effect, propionibacteria have to survive and to remain metabolically active in the digestive tract. The aim of the present study was to investigate the survival and metabolic activity of Propionibacterium freudenreichii within the gastrointestinal tract of human microbiota-associated rats, and its influence on intestinal microbiota composition and metabolism. Twenty-five dairy Propionibacterium strains were screened for their tolerance towards digestive stresses and their ability to produce propionate in a medium mimicking the content of the human colon. Three strains were selected and a daily dose of 2 x 10(10) colony-forming units was fed to groups of human microbiota-associated rats for 20 d before microbiological, biochemical and molecular investigations being carried out. These strains all reached 8-log values per g faeces, showing their ability to survive in the gastrointestinal tract. Transcriptional activity within the intestine was demonstrated by the presence of P. freudenreichii-specific transcarboxylase mRNA. The probiotic efficacy of propionibacteria was yet species- and strain-dependent. Indeed, two of the strains, namely TL133 and TL1348, altered the faecal microbiota composition, TL133 also increasing the caecal concentration of acetate, propionate and butyrate, while the third strain, TL3, did not have similar effects. Such alterations may have an impact on gut health and will thus be taken into consideration for further in vivo investigations on probiotic potentialities of P. freudenreichii.


British Journal of Nutrition | 2008

Increased induction of apoptosis by Propionibacterium freudenreichii TL133 in colonic mucosal crypts of human microbiota-associated rats treated with 1,2-dimethylhydrazine

Annaı̈g Lan; Aurélia Bruneau; Martine Bensaada; Catherine Philippe; Pascale Bellaud; Gwénaël Jan

Propionibacterium freudenreichii, a food-grade bacterium able to kill colon cancer cell lines in vitro by apoptosis, may exert an anticarcinogenic effect in vivo. To assess this hypothesis, we administered daily 2 x 10(10) colony-forming units (CFU) of P. freudenreichii TL133 to human microbiota-associated (HMA) rats for 18 d. Either saline or 1,2-dimethylhydrazine (DMH) was also administered on days 13 and 17 and rats were killed on day 19. The levels of apoptosis and proliferation in the mid and distal colon were assessed by terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) and proliferating cell nuclear antigen (PCNA) immunolabelling, respectively. The administration of P. freudenreichii TL133 significantly increased the number of apoptotic cells in DMH-treated rats compared to those given DMH only (P < 0.01). Furthermore, propionibacteria were able to decrease the proliferation index in the distal colon after treatment with DMH (P < 0.01). Conversely, propionibacteria alone did not exert such an effect on healthy colonic mucosa. P. freudenreichii TL133 thus facilitated the elimination of damaged cells by apoptosis in the rat colon after genotoxic insult and may play a protective role against colon cancer.


British Journal of Nutrition | 2006

Wine constituents inhibit thrombosis but not atherogenesis in C57BL/6 apolipoprotein E-deficient mice

Thierry Soulat; Catherine Philippe; Claire Bal dit Sollier; Christophe Brézillon; Natacha Berge; Pierre-Louis Teissedre; Jacques Callebert; Ludovic Drouet

Regular and moderate wine consumption is one of the explanations suggested for the lower incidence of cardiovascular events in France compared with other industrialized countries. We evaluated whether alcohol alone or combined with red wine polyphenols reduced plaque size and/or attenuated thrombotic reactivity at the site of advanced atherosclerotic lesions. Red wine extract, or purified (+)-catechin with alcohol, or alcohol alone, was added for 12 weeks to the drinking water of apoE-deficient (apoE(-/-)) C57BL/6 mice and wild-type counterparts. In the apoE(-/-) mice, all alcohol-containing mixtures were associated with a larger size of aortic atherosclerotic lesions. On the other hand, red wine extract and (+)-catechin significantly inhibited blood thrombotic reactivity (P<0.05) as assessed in a cylindrical perfusion chamber model of experimental thrombosis: area reductions in cross-sectional surface of the ex vivo thrombus were 64% and 63%, respectively. In the wild-type mice, red wine extract and (+)-catechin tended to reduce thrombogenicity, which was on the whole less marked than in the apoE(-/-) mice. These findings suggest that a moderate and regular consumption of red wine may protect against clinical cardiovascular events, mainly by attenuating the thrombogenic response rather than by reducing the development of atherosclerotic lesions. This antithrombogenic effect may include normalization of the abnormally high thrombogenic responsiveness in apoE(-/-) mice as well as a direct antithrombotic effect.


Digestive Diseases and Sciences | 2006

Changes Induced in Colonocytes by Extensive Intestinal Resection in Rats

Hubert Lardy; Muriel Thomas; Marie-Louise Noordine; Aurélia Bruneau; Claire Cherbuy; Pierre Vaugelade; Catherine Philippe; Virginie Colomb; Pierre-Henri Duée

After massive intestinal resection, physiological compensatory events occur in the remnant small bowel and in the colon. The aim of our work was to study the propensity of the colon to evolve after a massive small bowel resection in rats. The resected group, where 80% of the small bowel length was removed, was compared with sham-operated rats (transected). During the 7 postoperative days, rats were fed orally or they received an elemental nutrition through a gastric catheter. PepT1 and NHE3 mRNAs encoding apical membrane transporters were not modified in the present experiment. However, two unexpected genes (I-FABP and UroR) were up-regulated in the colon following intestinal resection. These modifications occurred without an imbalance of cell cycle protein content and in a context of low short-chain fatty acid production.


Journal of Chromatography B | 2012

Semi-automated solid-phase extraction method for studying the biodegradation of ochratoxin A by human intestinal microbiota

Valérie Camel; Minale Ouethrani; Cindy Coudray; Catherine Philippe

A simple and rapid semi-automated solid-phase (SPE) extraction method has been developed for the analysis of ochratoxin A in aqueous matrices related to biodegradation experiments (namely digestive contents and faecal excreta), with a view of using this method to follow OTA biodegradation by human intestinal microbiota. Influence of extraction parameters that could affect semi-automated SPE efficiency was studied, using C18-silica as the sorbent and water as the simplest matrix, being further applied to the matrices of interest. Conditions finally retained were as follows: 5-mL aqueous samples (pH 3) containing an organic modifier (20% ACN) were applied on 100-mg cartridges. After drying (9 mL of air), the cartridge was rinsed with 5-mL H(2)O/ACN (80:20, v/v), before eluting the compounds with 3 × 1 mL of MeOH/THF (10:90, v/v). Acceptable recoveries and limits of quantification could be obtained considering the complexity of the investigated matrices and the low volumes sampled; this method was also suitable for the analysis of ochratoxin B in faecal extracts. Applicability of the method is illustrated by preliminary results of ochratoxin A biodegradation studies by human intestinal microbiota under simple in vitro conditions. Interestingly, partial degradation of ochratoxin A was observed, with efficiencies ranging from 14% to 47% after 72 h incubation. In addition, three phase I metabolites could be identified using high resolution mass spectrometry, namely ochratoxin α, open ochratoxin A and ochratoxin B.


Journal of Agricultural and Food Chemistry | 2010

Apple proanthocyanidins do not reduce the induction of preneoplastic lesions in the colon of rats associated with human microbiota.

Evelyne F. Lhoste; Aurélia Bruneau; Martine Bensaada; Claire Cherbuy; Catherine Philippe; Sandrine Bruel; Marie-Madeleine Sutren; Sylvain Guyot; Pierre-Henri Duée; Paule Latino-Martel

Since the gut microbiota metabolizes various dietary constituents unabsorbed by the small intestine and modulates colon function, it plays an essential role in colon carcinogenesis. First, we have developed a model of human microbiota-associated rats (HMA), fed a human-type diet and injected with 1-2,dimethylhydrazine (DMH). We observed that the number and size of DMH-induced aberrant crypt foci (ACF) were significantly higher in HMA rats than in germ-free or conventional rats. Second, we used this model to assess the protective effect of an apple proanthocyanidin-rich extract (APE) on colon carcinogenesis. In this model, ACF number and multiplicity were not reduced by APE at 0.001% and 0.01% in drinking water. They were higher with APE 0.1% than with APE 0.01%. Therefore, the cross-talk between human microbiota and the colon epithelium should be taken into account in carcinogenesis models. Moreover, attention should be paid prior to using proanthocyanidin extracts as dietary supplements for humans.


Frontiers in Neuroscience | 2018

Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats

Mathilde Jaglin; Moez Rhimi; Catherine Philippe; Nicolas Pons; Aurélia Bruneau; Bénédicte Goustard; Valérie Daugé; Emmanuelle Maguin; Laurent Naudon

Gut microbiota produces a wide and diverse array of metabolites that are an integral part of the host metabolome. The emergence of the gut microbiome-brain axis concept has prompted investigations on the role of gut microbiota dysbioses in the pathophysiology of brain diseases. Specifically, the search for microbe-related metabolomic signatures in human patients and animal models of psychiatric disorders has pointed out the importance of the microbial metabolism of aromatic amino acids. Here, we investigated the effect of indole on brain and behavior in rats. Indole is produced by gut microbiota from tryptophan, through the tryptophanase enzyme encoded by the tnaA gene. First, we mimicked an acute and high overproduction of indole by injecting this compound in the cecum of conventional rats. This treatment led to a dramatic decrease of motor activity. The neurodepressant oxidized derivatives of indole, oxindole and isatin, accumulated in the brain. In addition, increase in eye blinking frequency and in c-Fos protein expression in the dorsal vagal complex denoted a vagus nerve activation. Second, we mimicked a chronic and moderate overproduction of indole by colonizing germ-free rats with the indole-producing bacterial species Escherichia coli. We compared emotional behaviors of these rats with those of germ-free rats colonized with a genetically-engineered counterpart strain unable to produce indole. Rats overproducing indole displayed higher helplessness in the tail suspension test, and enhanced anxiety-like behavior in the novelty, elevated plus maze and open-field tests. Vagus nerve activation was suggested by an increase in eye blinking frequency. However, unlike the conventional rats dosed with a high amount of indole, the motor activity was not altered and neither oxindole nor isatin could be detected in the brain. Further studies are required for a comprehensive understanding of the mechanisms supporting indole effects on emotional behaviors. As our findings suggest that people whose gut microbiota is highly prone to produce indole could be more likely to develop anxiety and mood disorders, we addressed the issue of the inter-individual variability of indole producing potential in humans. An in silico investigation of metagenomic data focused on the tnaA gene products definitively proved this inter-individual variability.


Gastroenterology | 2013

264 Bacteroides Thetaiotaomicron and Faecalibacterium prausnitzii Shape the Mucus Production and Mucin O-Glycosylation in Colon Epithelium

Muriel Thomas; Laura Wrzosek; Sylvie Miquel; Marie-Louise Noordine; Stephan Bouet; Marie Joncquel Chevalier-Curt; Véronique Robert; Catherine Philippe; Chantal Bridonneau; Claire Cherbuy; Catherine Robbe-Masselot; Philippe Langella

The intestinal mucus layer plays a key role in themaintenance of host-microbiota homeostasis. The production of goblet cells, which secrete mucus, is modulated by microbiota, but neither the species nor the mechanisms involved in this process are still unknown. We studied how two prominent commensal bacteria may influence the mucus production by goblet cells and the profile of mucin glycosylation in gnotobiotic rats. We have chosen Bacteroides thetaiotaomicron, which is characterized by its high mucus-polysaccharides degrading potential, and Faecalibacterium prausnitzii, which is a sensor of intestinal health. Germ free rats (GF) were orally inoculated with B. thetaiotaomicron either alone or with a mix of B. thetaiotaomicron and F. prausnitzii leading respectively to mono-associated (Bt-rats) and di-associated rats (Bt+Fp-rats). A panel of goblet cells markers was analyzed by histological staining, immunohistochemistry, quantitative PCR and Western blot in colon epithelium. The mucin O-glycosylation was determined by MALDI TOF mass spectrometry. In Bt-rats, the goblet cells number and the expression of mucus-related genes (muc2, muc4, klf4, c1galt1 and b4galt4 mRNAs) were increased compared to GF ones. KLF4 protein, a transcription factor involved in goblet cell terminal differentiation, was also increased in Bt-rats, whereas a decrease in Chromogranin A protein, a marker of enteroendocrine cells was observed. We propose that B. thetaiotaomicron provokes an imbalance inside the secretory lineage by favoring mucus production at the expense of enteroendocrine cells. When B. thetaiotaomicron was associated to F. prausnitzii, the effects on goblet cells were reduced/ decreased/diminished. Indeed, the number of goblet cells per crypt and the amount of KLF4 protein were lower in Bt+Fp-rats than in Bt-rats. We then analyzed the mucus quality by studying the profile of mucin O-glycosylation. In Bt-rats, a decrease in the production of sulfated (4.5% of total oligosaccharides instead of 12.9%) and neutral (40.1% instead of 52.8%) oligosaccharides was observed and was correlated to an increased proportion of sialylated O-glycans carrying NeuAc (24.2% instead of 18.9%) or NeuGc (31.2% instead of 15.4%) residues compared to GF rats. Thus, B. thetaiotaomicron impacts the composition of mucin O-glycans, with a decrease in sulfated and neutral oligosaccharides in favor of sialylated ones. Furthermore, glycosylation of mucins from Bt+Fp-rats resembled to those of GF rats. As previously observed for goblet cells, F. prausnitzii seemed to decrease the effect of B. thetaiotaomicron on mucus. Using a novel gnotobiotic model, which is the first described with F. prausnitzii, we showed how the balance between B. thetaiotaomicron and F. prausnitzii plays a key role in protecting epithelium via their respective effects on mucus.

Collaboration


Dive into the Catherine Philippe's collaboration.

Top Co-Authors

Avatar

Aurélia Bruneau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claire Cherbuy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Martine Bensaada

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Philippe Gérard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Chantal Bridonneau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christophe Brézillon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Joël Doré

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Philippe Langella

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pierre-Henri Duée

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge