Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cathrine Broberg Vågbø is active.

Publication


Featured researches published by Cathrine Broberg Vågbø.


Molecular Cell | 2013

ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility.

Guanqun Zheng; John Arne Dahl; Yamei Niu; Peter Fedorcsak; Chun-Min Huang; Charles J. Li; Cathrine Broberg Vågbø; Yue Shi; Wen-Ling Wang; Shuhui Song; Zhike Lu; Ralph P.G. Bosmans; Qing Dai; Ya-Juan Hao; Xin Yang; Wenming Zhao; Wei-Min Tong; Xiu-Jie Wang; Florian Bogdan; Kari Furu; Ye Fu; Guifang Jia; Xu Zhao; Jun Liu; Hans E. Krokan; Arne Klungland; Yun-Gui Yang; Chuan He

N(6)-methyladenosine (m(6)A) is the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes. Here we report ALKBH5 as another mammalian demethylase that oxidatively reverses m(6)A in mRNA in vitro and in vivo. This demethylation activity of ALKBH5 significantly affects mRNA export and RNA metabolism as well as the assembly of mRNA processing factors in nuclear speckles. Alkbh5-deficient male mice have increased m(6)A in mRNA and are characterized by impaired fertility resulting from apoptosis that affects meiotic metaphase-stage spermatocytes. In accordance with this defect, we have identified in mouse testes 1,551 differentially expressed genes that cover broad functional categories and include spermatogenesis-related mRNAs involved in the p53 functional interaction network. The discovery of this RNA demethylase strongly suggests that the reversible m(6)A modification has fundamental and broad functions in mammalian cells.


Nature | 2003

Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA

Per Arne Aas; Marit Otterlei; Pål Ø. Falnes; Cathrine Broberg Vågbø; Frank Skorpen; Mansour Akbari; Ottar Sundheim; Magnar Bjørås; Geir Slupphaug; Erling Seeberg; Hans E. Krokan

Repair of DNA damage is essential for maintaining genome integrity, and repair deficiencies in mammals are associated with cancer, neurological disease and developmental defects. Alkylation damage in DNA is repaired by at least three different mechanisms, including damage reversal by oxidative demethylation of 1-methyladenine and 3-methylcytosine by Escherichia coli AlkB. By contrast, little is known about consequences and cellular handling of alkylation damage to RNA. Here we show that two human AlkB homologues, hABH2 and hABH3, also are oxidative DNA demethylases and that AlkB and hABH3, but not hABH2, also repair RNA. Whereas AlkB and hABH3 prefer single-stranded nucleic acids, hABH2 acts more efficiently on double-stranded DNA. In addition, AlkB and hABH3 expressed in E. coli reactivate methylated RNA bacteriophage MS2 in vivo, illustrating the biological relevance of this repair activity and establishing RNA repair as a potentially important defence mechanism in living cells. The different catalytic properties and the different subnuclear localization patterns shown by the human homologues indicate that hABH2 and hABH3 have distinct roles in the cellular response to alkylation damage.


The EMBO Journal | 2006

Repair deficient mice reveal mABH2 as the primary oxidative demethylase for repairing 1meA and 3meC lesions in DNA

Jeanette Ringvoll; Line M. Nordstrand; Cathrine Broberg Vågbø; Vivi Talstad; Karen Reite; Per Arne Aas; Knut H. Lauritzen; Nina-Beate Liabakk; Alexandra Bjørk; Richard W. Doughty; Pål Ø. Falnes; Hans E. Krokan; Arne Klungland

Two human homologs of the Escherichia coli AlkB protein, denoted hABH2 and hABH3, were recently shown to directly reverse 1‐methyladenine (1meA) and 3‐methylcytosine (3meC) damages in DNA. We demonstrate that mice lacking functional mABH2 or mABH3 genes, or both, are viable and without overt phenotypes. Neither were histopathological changes observed in the gene‐targeted mice. However, in the absence of any exogenous exposure to methylating agents, mice lacking mABH2, but not mABH3 defective mice, accumulate significant levels of 1meA in the genome, suggesting the presence of a biologically relevant endogenous source of methylating agent. Furthermore, embryonal fibroblasts from mABH2‐deficient mice are unable to remove methyl methane sulfate (MMS)‐induced 1meA from genomic DNA and display increased cytotoxicity after MMS exposure. In agreement with these results, we found that in vitro repair of 1meA and 3meC in double‐stranded DNA by nuclear extracts depended primarily, if not solely, on mABH2. Our data suggest that mABH2 and mABH3 have different roles in the defense against alkylating agents.


Molecular and Cellular Biology | 2010

Mammalian ALKBH8 Possesses tRNA Methyltransferase Activity Required for the Biogenesis of Multiple Wobble Uridine Modifications Implicated in Translational Decoding

Lene Songe-Møller; Erwin van den Born; Vibeke Leihne; Cathrine Broberg Vågbø; Terese Kristoffersen; Hans E. Krokan; Finn Kirpekar; Pål Ø. Falnes; Arne Klungland

ABSTRACT Uridines in the wobble position of tRNA are almost invariably modified. Modifications can increase the efficiency of codon reading, but they also prevent mistranslation by limiting wobbling. In mammals, several tRNAs have 5-methoxycarbonylmethyluridine (mcm5U) or derivatives thereof in the wobble position. Through analysis of tRNA from Alkbh8−/− mice, we show here that ALKBH8 is a tRNA methyltransferase required for the final step in the biogenesis of mcm5U. We also demonstrate that the interaction of ALKBH8 with a small accessory protein, TRM112, is required to form a functional tRNA methyltransferase. Furthermore, prior ALKBH8-mediated methylation is a prerequisite for the thiolation and 2′-O-ribose methylation that form 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) and 5-methoxycarbonylmethyl-2′-O-methyluridine (mcm5Um), respectively. Despite the complete loss of all of these uridine modifications, Alkbh8−/− mice appear normal. However, the selenocysteine-specific tRNA (tRNASec) is aberrantly modified in the Alkbh8−/− mice, and for the selenoprotein Gpx1, we indeed observed reduced recoding of the UGA stop codon to selenocysteine.


The EMBO Journal | 2006

Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage

Ottar Sundheim; Cathrine Broberg Vågbø; Magnar Bjørås; Mirta M. L. Sousa; Vivi Talstad; Per Arne Aas; Finn Drabløs; Hans E. Krokan; John A. Tainer; Geir Slupphaug

Methylating agents are ubiquitous in the environment, and central in cancer therapy. The 1‐methyladenine and 3‐methylcytosine lesions in DNA/RNA contribute to the cytotoxicity of such agents. These lesions are directly reversed by ABH3 (hABH3) in humans and AlkB in Escherichia coli. Here, we report the structure of the hABH3 catalytic core in complex with iron and 2‐oxoglutarate (2OG) at 1.5 Å resolution and analyse key site‐directed mutants. The hABH3 structure reveals the β‐strand jelly‐roll fold that coordinates a catalytically active iron centre by a conserved His1‐X‐Asp/Glu‐Xn‐His2 motif. This experimentally establishes hABH3 as a structural member of the Fe(II)/2OG‐dependent dioxygenase superfamily, which couples substrate oxidation to conversion of 2OG into succinate and CO2. A positively charged DNA/RNA binding groove indicates a distinct nucleic acid binding conformation different from that predicted in the AlkB structure with three nucleotides. These results uncover previously unassigned key catalytic residues, identify a flexible hairpin involved in nucleotide flipping and ss/ds‐DNA discrimination, and reveal self‐hydroxylation of an active site leucine that may protect against uncoupled generation of dangerous oxygen radicals.


Journal of Biological Chemistry | 2008

Human AlkB Homolog 1 Is a Mitochondrial Protein That Demethylates 3-Methylcytosine in DNA and RNA

Marianne Pedersen Westbye; Emadoldin Feyzi; Per Arne Aas; Cathrine Broberg Vågbø; Vivi Talstad; Bodil Kavli; Lars Hagen; Ottar Sundheim; Mansour Akbari; Nina-Beate Liabakk; Geir Slupphaug; Marit Otterlei; Hans E. Krokan

The Escherichia coli AlkB protein and human homologs hABH2 and hABH3 are 2-oxoglutarate (2OG)/Fe(II)-dependent DNA/RNA demethylases that repair 1-methyladenine and 3-methylcytosine residues. Surprisingly, hABH1, which displays the strongest homology to AlkB, failed to show repair activity in two independent studies. Here, we show that hABH1 is a mitochondrial protein, as demonstrated using fluorescent fusion protein expression, immunocytochemistry, and Western blot analysis. A fraction is apparently nuclear and this fraction increases strongly if the fluorescent tag is placed at the N-terminal end of the protein, thus interfering with mitochondrial targeting. Molecular modeling of hABH1 based upon the sequence and known structures of AlkB and hABH3 suggested an active site almost identical to these enzymes. hABH1 decarboxylates 2OG in the absence of a prime substrate, and the activity is stimulated by methylated nucleotides. Employing three different methods we demonstrate that hABH1 demethylates 3-methylcytosine in single-stranded DNA and RNA in vitro. Site-specific mutagenesis confirmed that the putative Fe(II) and 2OG binding residues are essential for activity. In conclusion, hABH1 is a functional mitochondrial AlkB homolog that repairs 3-methylcytosine in single-stranded DNA and RNA.


Nature Communications | 2011

ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA

Erwin van den Born; Cathrine Broberg Vågbø; Lene Songe-Møller; Vibeke Leihne; Guro Flor Lien; Grazyna Leszczynska; Andrzej Malkiewicz; Hans E. Krokan; Finn Kirpekar; Arne Klungland; Pål Ø. Falnes

Mammals have nine different homologues (ALKBH1-9) of the Escherichia coli DNA repair demethylase AlkB. ALKBH2 is a genuine DNA repair enzyme, but the in vivo function of the other ALKBH proteins has remained elusive. It was recently shown that ALKBH8 contains an additional transfer RNA (tRNA) methyltransferase domain, which generates the wobble nucleoside 5-methoxycarbonylmethyluridine (mcm(5)U) from its precursor 5-carboxymethyluridine (cm(5)U). In this study, we report that (R)- and 5-methoxycarbonylhydroxymethyluridine (mchm(5)U), hydroxylated forms of mcm(5)U, are present in mammalian tRNA-Arg(UCG), and tRNA-Gly(UCC), respectively, representing the first example of a diastereomeric pair of modified RNA nucleosides. Through in vitro and in vivo studies, we show that both diastereomers of mchm(5)U are generated from mcm(5)U, and that the AlkB domain of ALKBH8 specifically hydroxylates mcm(5)U into (S)-mchm(5)U in tRNA-Gly(UCC). These findings expand the function of the ALKBH oxygenases beyond nucleic acid repair and increase the current knowledge on mammalian wobble uridine modifications and their biogenesis.


Nucleic Acids Research | 2011

A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA

Adam B. Robertson; John Arne Dahl; Cathrine Broberg Vågbø; Pankaj Tripathi; Hans E. Krokan; Arne Klungland

Recently, 5-hydroxymethylcytosine (5hmC) was identified in mammalian genomic DNA. The biological role of this modification remains unclear; however, identifying the genomic location of this modified base will assist in elucidating its function. We describe a method for the rapid and inexpensive identification of genomic regions containing 5hmC. This method involves the selective glucosylation of 5hmC residues by the β-glucosyltransferase from T4 bacteriophage creating β-glucosyl-5-hydroxymethylcytosine (β-glu-5hmC). The β-glu-5hmC modification provides a target that can be efficiently and selectively pulled down by J-binding protein 1 coupled to magnetic beads. DNA that is precipitated is suitable for analysis by quantitative PCR, microarray or sequencing. Furthermore, we demonstrate that the J-binding protein 1 pull down assay identifies 5hmC at the promoters of developmentally regulated genes in human embryonic stem cells. The method described here will allow for a greater understanding of the temporal and spatial effects that 5hmC may have on epigenetic regulation at the single gene level.


Journal of Cell Biology | 2009

Identification of a novel, widespread, and functionally important PCNA-binding motif

Karin Margaretha Gilljam; Emadoldin Feyzi; Per Arne Aas; Mirta M. L. Sousa; Rebekka Müller; Cathrine Broberg Vågbø; Tara Catterall; Nina B. Liabakk; Geir Slupphaug; Finn Drabløs; Hans E. Krokan; Marit Otterlei

AlkB PCNA-interacting motif (APIM) is present in >200 proteins and may mediate PCNA binding during genotoxic stress.


Nucleic Acids Research | 2011

UNG-initiated base excision repair is the major repair route for 5-fluorouracil in DNA, but 5-fluorouracil cytotoxicity depends mainly on RNA incorporation

Henrik Sahlin Pettersen; Torkild Visnes; Cathrine Broberg Vågbø; Eva. K. Svaasand; Berit Doseth; Geir Slupphaug; Bodil Kavli; Hans E. Krokan

Cytotoxicity of 5-fluorouracil (FU) and 5-fluoro-2′-deoxyuridine (FdUrd) due to DNA fragmentation during DNA repair has been proposed as an alternative to effects from thymidylate synthase (TS) inhibition or RNA incorporation. The goal of the present study was to investigate the relative contribution of the proposed mechanisms for cytotoxicity of 5-fluoropyrimidines. We demonstrate that in human cancer cells, base excision repair (BER) initiated by the uracil–DNA glycosylase UNG is the major route for FU–DNA repair in vitro and in vivo. SMUG1, TDG and MBD4 contributed modestly in vitro and not detectably in vivo. Contribution from mismatch repair was limited to FU:G contexts at best. Surprisingly, knockdown of individual uracil–DNA glycosylases or MSH2 did not affect sensitivity to FU or FdUrd. Inhibitors of common steps of BER or DNA damage signalling affected sensitivity to FdUrd and HmdUrd, but not to FU. In support of predominantly RNA-mediated cytotoxicity, FU-treated cells accumulated ~3000- to 15 000-fold more FU in RNA than in DNA. Moreover, FU-cytotoxicity was partially reversed by ribonucleosides, but not deoxyribonucleosides and FU displayed modest TS-inhibition compared to FdUrd. In conclusion, UNG-initiated BER is the major route for FU–DNA repair, but cytotoxicity of FU is predominantly RNA-mediated, while DNA-mediated effects are limited to FdUrd.

Collaboration


Dive into the Cathrine Broberg Vågbø's collaboration.

Top Co-Authors

Avatar

Hans E. Krokan

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Arne Klungland

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar

Geir Slupphaug

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Per Arne Aas

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magnar Bjørås

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ottar Sundheim

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marit Otterlei

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge