Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Per Arne Aas is active.

Publication


Featured researches published by Per Arne Aas.


Nature | 2003

Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA

Per Arne Aas; Marit Otterlei; Pål Ø. Falnes; Cathrine Broberg Vågbø; Frank Skorpen; Mansour Akbari; Ottar Sundheim; Magnar Bjørås; Geir Slupphaug; Erling Seeberg; Hans E. Krokan

Repair of DNA damage is essential for maintaining genome integrity, and repair deficiencies in mammals are associated with cancer, neurological disease and developmental defects. Alkylation damage in DNA is repaired by at least three different mechanisms, including damage reversal by oxidative demethylation of 1-methyladenine and 3-methylcytosine by Escherichia coli AlkB. By contrast, little is known about consequences and cellular handling of alkylation damage to RNA. Here we show that two human AlkB homologues, hABH2 and hABH3, also are oxidative DNA demethylases and that AlkB and hABH3, but not hABH2, also repair RNA. Whereas AlkB and hABH3 prefer single-stranded nucleic acids, hABH2 acts more efficiently on double-stranded DNA. In addition, AlkB and hABH3 expressed in E. coli reactivate methylated RNA bacteriophage MS2 in vivo, illustrating the biological relevance of this repair activity and establishing RNA repair as a potentially important defence mechanism in living cells. The different catalytic properties and the different subnuclear localization patterns shown by the human homologues indicate that hABH2 and hABH3 have distinct roles in the cellular response to alkylation damage.


The EMBO Journal | 1999

Post‐replicative base excision repair in replication foci

Marit Otterlei; Emma Warbrick; Toril A. Nagelhus; Terje Haug; Geir Slupphaug; Mansour Akbari; Per Arne Aas; Kristin Solum Steinsbekk; Oddmund Bakke; Hans E. Krokan

Base excision repair (BER) is initiated by a DNA glycosylase and is completed by alternative routes, one of which requires proliferating cell nuclear antigen (PCNA) and other proteins also involved in DNA replication. We report that the major nuclear uraci‐DNA glycosylase (UNG2) increases in S phase, during which it co‐localizes with incorporated BrdUrd in replication foci. Uracil is rapidly removed from replicatively incorporated dUMP residues in isolated nuclei. Neutralizing antibodies to UNG2 inhibit this removal, indicating that UNG2 is the major uraci‐DNA glycosylase responsible. PCNA and replication protein A (RPA) co‐localize with UNG2 in replication foci, and a direct molecular interaction of UNG2 with PCNA (one binding site) and RPA (two binding sites) was demonstrated using two‐hybrid assays, a peptide SPOT assay and enzyme‐linked immunosorbent assays. These results demonstrate rapid post‐replicative removal of incorporated uracil by UNG2 and indicate the formation of a BER complex that contains UNG2, RPA and PCNA close to the replication fork.


Journal of Biological Chemistry | 2002

hUNG2 Is the Major Repair Enzyme for Removal of Uracil from U:A Matches, U:G Mismatches, and U in Single-stranded DNA, with hSMUG1 as a Broad Specificity Backup

Bodil Kavli; Ottar Sundheim; Mansour Akbari; Marit Otterlei; Hilde Nilsen; Frank Skorpen; Per Arne Aas; Lars Hagen; Hans E. Krokan; Geir Slupphaug

hUNG2 and hSMUG1 are the only known glycosylases that may remove uracil from both double- and single-stranded DNA in nuclear chromatin, but their relative contribution to base excision repair remains elusive. The present study demonstrates that both enzymes are strongly stimulated by physiological concentrations of Mg2+ , at which the activity of hUNG2 is 2–3 orders of magnitude higher than of hSMUG1. Moreover, Mg2+ increases the preference of hUNG2 toward uracil in ssDNA nearly 40-fold. APE1 has a strong stimulatory effect on hSMUG1 against dsU, apparently because of enhanced dissociation of hSMUG1 from AP sites in dsDNA. hSMUG1 also has a broader substrate specificity than hUNG2, including 5-hydroxymethyluracil and 3,N 4-ethenocytosine. hUNG2 is excluded from, whereas hSMUG1 accumulates in, nucleoli in living cells. In contrast, only hUNG2 accumulates in replication foci in the S-phase. hUNG2 in nuclear extracts initiates base excision repair of plasmids containing either U:A and U:G in vitro. Moreover, an additional but delayed repair of the U:G plasmid is observed that is not inhibited by neutralizing antibodies against hUNG2 or hSMUG1. We propose a model in which hUNG2 is responsible for both prereplicative removal of deaminated cytosine and postreplicative removal of misincorporated uracil at the replication fork. We also provide evidence that hUNG2 is the major enzyme for removal of deaminated cytosine outside of replication foci, with hSMUG1 acting as a broad specificity backup.


The EMBO Journal | 2006

Repair deficient mice reveal mABH2 as the primary oxidative demethylase for repairing 1meA and 3meC lesions in DNA

Jeanette Ringvoll; Line M. Nordstrand; Cathrine Broberg Vågbø; Vivi Talstad; Karen Reite; Per Arne Aas; Knut H. Lauritzen; Nina-Beate Liabakk; Alexandra Bjørk; Richard W. Doughty; Pål Ø. Falnes; Hans E. Krokan; Arne Klungland

Two human homologs of the Escherichia coli AlkB protein, denoted hABH2 and hABH3, were recently shown to directly reverse 1‐methyladenine (1meA) and 3‐methylcytosine (3meC) damages in DNA. We demonstrate that mice lacking functional mABH2 or mABH3 genes, or both, are viable and without overt phenotypes. Neither were histopathological changes observed in the gene‐targeted mice. However, in the absence of any exogenous exposure to methylating agents, mice lacking mABH2, but not mABH3 defective mice, accumulate significant levels of 1meA in the genome, suggesting the presence of a biologically relevant endogenous source of methylating agent. Furthermore, embryonal fibroblasts from mABH2‐deficient mice are unable to remove methyl methane sulfate (MMS)‐induced 1meA from genomic DNA and display increased cytotoxicity after MMS exposure. In agreement with these results, we found that in vitro repair of 1meA and 3meC in double‐stranded DNA by nuclear extracts depended primarily, if not solely, on mABH2. Our data suggest that mABH2 and mABH3 have different roles in the defense against alkylating agents.


The EMBO Journal | 2006

Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage

Ottar Sundheim; Cathrine Broberg Vågbø; Magnar Bjørås; Mirta M. L. Sousa; Vivi Talstad; Per Arne Aas; Finn Drabløs; Hans E. Krokan; John A. Tainer; Geir Slupphaug

Methylating agents are ubiquitous in the environment, and central in cancer therapy. The 1‐methyladenine and 3‐methylcytosine lesions in DNA/RNA contribute to the cytotoxicity of such agents. These lesions are directly reversed by ABH3 (hABH3) in humans and AlkB in Escherichia coli. Here, we report the structure of the hABH3 catalytic core in complex with iron and 2‐oxoglutarate (2OG) at 1.5 Å resolution and analyse key site‐directed mutants. The hABH3 structure reveals the β‐strand jelly‐roll fold that coordinates a catalytically active iron centre by a conserved His1‐X‐Asp/Glu‐Xn‐His2 motif. This experimentally establishes hABH3 as a structural member of the Fe(II)/2OG‐dependent dioxygenase superfamily, which couples substrate oxidation to conversion of 2OG into succinate and CO2. A positively charged DNA/RNA binding groove indicates a distinct nucleic acid binding conformation different from that predicted in the AlkB structure with three nucleotides. These results uncover previously unassigned key catalytic residues, identify a flexible hairpin involved in nucleotide flipping and ss/ds‐DNA discrimination, and reveal self‐hydroxylation of an active site leucine that may protect against uncoupled generation of dangerous oxygen radicals.


Journal of Biological Chemistry | 2008

Human AlkB Homolog 1 Is a Mitochondrial Protein That Demethylates 3-Methylcytosine in DNA and RNA

Marianne Pedersen Westbye; Emadoldin Feyzi; Per Arne Aas; Cathrine Broberg Vågbø; Vivi Talstad; Bodil Kavli; Lars Hagen; Ottar Sundheim; Mansour Akbari; Nina-Beate Liabakk; Geir Slupphaug; Marit Otterlei; Hans E. Krokan

The Escherichia coli AlkB protein and human homologs hABH2 and hABH3 are 2-oxoglutarate (2OG)/Fe(II)-dependent DNA/RNA demethylases that repair 1-methyladenine and 3-methylcytosine residues. Surprisingly, hABH1, which displays the strongest homology to AlkB, failed to show repair activity in two independent studies. Here, we show that hABH1 is a mitochondrial protein, as demonstrated using fluorescent fusion protein expression, immunocytochemistry, and Western blot analysis. A fraction is apparently nuclear and this fraction increases strongly if the fluorescent tag is placed at the N-terminal end of the protein, thus interfering with mitochondrial targeting. Molecular modeling of hABH1 based upon the sequence and known structures of AlkB and hABH3 suggested an active site almost identical to these enzymes. hABH1 decarboxylates 2OG in the absence of a prime substrate, and the activity is stimulated by methylated nucleotides. Employing three different methods we demonstrate that hABH1 demethylates 3-methylcytosine in single-stranded DNA and RNA in vitro. Site-specific mutagenesis confirmed that the putative Fe(II) and 2OG binding residues are essential for activity. In conclusion, hABH1 is a functional mitochondrial AlkB homolog that repairs 3-methylcytosine in single-stranded DNA and RNA.


Journal of Cell Biology | 2009

Identification of a novel, widespread, and functionally important PCNA-binding motif

Karin Margaretha Gilljam; Emadoldin Feyzi; Per Arne Aas; Mirta M. L. Sousa; Rebekka Müller; Cathrine Broberg Vågbø; Tara Catterall; Nina B. Liabakk; Geir Slupphaug; Finn Drabløs; Hans E. Krokan; Marit Otterlei

AlkB PCNA-interacting motif (APIM) is present in >200 proteins and may mediate PCNA binding during genotoxic stress.


Progress in Nucleic Acid Research and Molecular Biology | 2001

Properties and functions of human uracil-DNA glycosylase from the UNG gene.

Hans E. Krokan; Marit Otterlei; Hilde Nilsen; Bodil Kavli; Frank Skorpen; Sonja Andersen; Camilla Skjelbred; Mansour Akbari; Per Arne Aas; Geir Slupphaug

The human UNG-gene at position 12q24.1 encodes nuclear (UNG2) and mitochondrial (UNG1) forms of uracil-DNA glycosylase using differentially regulated promoters, PA and PB, and alternative splicing to produce two proteins with unique N-terminal sorting sequences. PCNA and RPA co-localize with UNG2 in replication foci and interact with N-terminal sequences in UNG2. Mitochondrial UNG1 is processed to shorter forms by mitochondrial processing peptidase (MPP) and an unidentified mitochondrial protease. The common core catalytic domain in UNG1 and UNG2 contains a conserved DNA binding groove and a tight-fitting uracil-binding pocket that binds uracil only when the uracil-containing nucleotide is flipped out. Certain single amino acid substitutions in the active site of the enzyme generate DNA glycosylases that remove either thymine or cytosine. These enzymes induce cytotoxic and mutagenic abasic (AP) sites in the E. coli chromosome and were used to examine biological consequences of AP sites. It has been assumed that a major role of the UNG gene product(s) is to repair mutagenic U:G mispairs caused by cytosine deamination. However, one major role of UNG2 is to remove misincorporated dUMP residues. Thus, knockout mice deficient in Ung activity (Ung-/- mice) have only small increases in GC-->AT transition mutations, but Ung-/- cells are deficient in removal of misincorporated dUMP and accumulate approximately 2000 uracil residues per cell. We propose that BER is important both in the prevention of cancer and for preserving the integrity of germ cell DNA during evolution.


DNA Repair | 2015

Cell cycle regulation of human DNA repair and chromatin remodeling genes.

Robin Mjelle; Siv A. Hegre; Per Arne Aas; Geir Slupphaug; Finn Drabløs; Pål Sætrom; Hans E. Krokan

Maintenance of a genome requires DNA repair integrated with chromatin remodeling. We have analyzed six transcriptome data sets and one data set on translational regulation of known DNA repair and remodeling genes in synchronized human cells. These data are available through our new database: www.dnarepairgenes.com. Genes that have similar transcription profiles in at least two of our data sets generally agree well with known protein profiles. In brief, long patch base excision repair (BER) is enriched for S phase genes, whereas short patch BER uses genes essentially equally expressed in all cell cycle phases. Furthermore, most genes related to DNA mismatch repair, Fanconi anemia and homologous recombination have their highest expression in the S phase. In contrast, genes specific for direct repair, nucleotide excision repair, as well as non-homologous end joining do not show cell cycle-related expression. Cell cycle regulated chromatin remodeling genes were most frequently confined to G1/S and S. These include e.g. genes for chromatin assembly factor 1 (CAF-1) major subunits CHAF1A and CHAF1B; the putative helicases HELLS and ATAD2 that both co-activate E2F transcription factors central in G1/S-transition and recruit DNA repair and chromatin-modifying proteins and DNA double strand break repair proteins; and RAD54L and RAD54B involved in double strand break repair. TOP2A was consistently most highly expressed in G2, but also expressed in late S phase, supporting a role in regulating entry into mitosis. Translational regulation complements transcriptional regulation and appears to be a relatively common cell cycle regulatory mechanism for DNA repair genes. Our results identify cell cycle phases in which different pathways have highest activity, and demonstrate that periodically expressed genes in a pathway are frequently co-expressed. Furthermore, the data suggest that S phase expression and over-expression of some multifunctional chromatin remodeling proteins may set up feedback loops driving cancer cell proliferation.


DNA Repair | 2015

AID expression in B-cell lymphomas causes accumulation of genomic uracil and a distinct AID mutational signature

Henrik Sahlin Pettersen; Anastasia Galashevskaya; Berit Doseth; Mirta M. L. Sousa; Antonio Sarno; Torkild Visnes; Per Arne Aas; Nina-Beate Liabakk; Geir Slupphaug; Pål Sætrom; Bodil Kavli; Hans E. Krokan

The most common mutations in cancer are C to T transitions, but their origin has remained elusive. Recently, mutational signatures of APOBEC-family cytosine deaminases were identified in many common cancers, suggesting off-target deamination of cytosine to uracil as a common mutagenic mechanism. Here we present evidence from mass spectrometric quantitation of deoxyuridine in DNA that shows significantly higher genomic uracil content in B-cell lymphoma cell lines compared to non-lymphoma cancer cell lines and normal circulating lymphocytes. The genomic uracil levels were highly correlated with AID mRNA and protein expression, but not with expression of other APOBECs. Accordingly, AID knockdown significantly reduced genomic uracil content. B-cells stimulated to express endogenous AID and undergo class switch recombination displayed a several-fold increase in total genomic uracil, indicating that B cells may undergo widespread cytosine deamination after stimulation. In line with this, we found that clustered mutations (kataegis) in lymphoma and chronic lymphocytic leukemia predominantly carry AID-hotspot mutational signatures. Moreover, we observed an inverse correlation of genomic uracil with uracil excision activity and expression of the uracil-DNA glycosylases UNG and SMUG1. In conclusion, AID-induced mutagenic U:G mismatches in DNA may be a fundamental and common cause of mutations in B-cell malignancies.

Collaboration


Dive into the Per Arne Aas's collaboration.

Top Co-Authors

Avatar

Hans E. Krokan

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Geir Slupphaug

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Marit Otterlei

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Bodil Kavli

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Cathrine Broberg Vågbø

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Frank Skorpen

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Mirta M. L. Sousa

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ottar Sundheim

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Antonio Sarno

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Mansour Akbari

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge