Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cathy Préville is active.

Publication


Featured researches published by Cathy Préville.


Journal of Medicinal Chemistry | 2011

Discovery of a Clinical Candidate from the Structurally Unique Dioxa-bicyclo[3.2.1]octane Class of Sodium-Dependent Glucose Cotransporter 2 Inhibitors

Vincent Mascitti; Tristan S. Maurer; Ralph P. Robinson; Jianwei Bian; Carine M. Boustany-Kari; Thomas A. Brandt; Benjamin Micah Collman; Amit S. Kalgutkar; Michelle K. Klenotic; Michael T. Leininger; André Lowe; Robert John Maguire; Victoria M. Masterson; Zhuang Miao; Emi Mukaiyama; Jigna D. Patel; John C. Pettersen; Cathy Préville; Brian Samas; Li She; Zhanna Sobol; Claire M. Steppan; Benjamin D. Stevens; Benjamin A. Thuma; Meera Tugnait; Dongxiang Zeng; Tong Zhu

Compound 4 (PF-04971729) belongs to a new class of potent and selective sodium-dependent glucose cotransporter 2 inhibitors incorporating a unique dioxa-bicyclo[3.2.1]octane (bridged ketal) ring system. In this paper we present the design, synthesis, preclinical evaluation, and human dose predictions related to 4. This compound demonstrated robust urinary glucose excretion in rats and an excellent preclinical safety profile. It is currently in phase 2 clinical trials and is being evaluated for the treatment of type 2 diabetes.


Journal of the American Chemical Society | 2012

Glycomimetic Ligands for the Human Asialoglycoprotein Receptor

Sreeman K. Mamidyala; Sanjay Dutta; Boris A. Chrunyk; Cathy Préville; Hong Wang; Jane M. Withka; Alexander McColl; Timothy A. Subashi; Steven J. Hawrylik; Matthew C. Griffor; Sung Kim; Jeffrey A. Pfefferkorn; David A. Price; Elnaz Menhaji-Klotz; Vincent Mascitti; M. G. Finn

The asialoglycoprotein receptor (ASGPR) is a high-capacity galactose-binding receptor expressed on hepatocytes that binds its native substrates with low affinity. More potent ligands are of interest for hepatic delivery of therapeutic agents. We report several classes of galactosyl analogues with varied substitution at the anomeric, C2-, C5-, and C6-positions. Significant increases in binding affinity were noted for several trifluoromethylacetamide derivatives without covalent attachment to the protein. A variety of new ligands were obtained with affinity for ASGPR as good as or better than that of the parent N-acetylgalactosamine, showing that modification on either side of the key C3,C4-diol moiety is well tolerated, consistent with previous models of a shallow binding pocket. The galactosyl pyranose motif therefore offers many opportunities for the attachment of other functional units or payloads while retaining low-micromolar or better affinity for the ASGPR.


Bioorganic & Medicinal Chemistry Letters | 2010

C-Aryl glycoside inhibitors of SGLT2: Exploration of sugar modifications including C-5 spirocyclization

Ralph P. Robinson; Vincent Mascitti; Carine M. Boustany-Kari; Christopher L. Carr; Patrick M. Foley; Emi Kimoto; Michael T. Leininger; André Lowe; Michelle K. Klenotic; James I. MacDonald; Robert John Maguire; Victoria M. Masterson; Tristan S. Maurer; Zhuang Miao; Jigna D. Patel; Cathy Préville; Matthew R. Reese; Li She; Claire M. Steppan; Benjamin A. Thuma; Tong Zhu

Modifications to the sugar portion of C-aryl glycoside sodium glucose transporter 2 (SGLT2) inhibitors were explored, including systematic deletion and modification of each of the glycoside hydroxyl groups. Based on results showing activity to be quite tolerant of structural change at the C-5 position, a series of novel C-5 spiro analogues was prepared. Some of these analogues exhibit low nanomolar potency versus SGLT2 and promote urinary glucose excretion (UGE) in rats. However, due to sub-optimal pharmacokinetic parameters (in particular half-life), predicted human doses did not meet criteria for further advancement.


Organic Letters | 2010

Stereoselective Synthesis of a Dioxa-bicyclo[3.2.1]octane SGLT2 Inhibitor

Vincent Mascitti; Cathy Préville

A promising class of SGLT2 inhibitors bearing a unique dioxa-bicyclo[3.2.1]octane motif was recently disclosed. An improved stereoselective synthesis providing efficient access to one of the most potent and selective compounds from this class is reported. A one-pot deprotection/cyclization was used as the key step to form the dioxa-bicyclo[3.2.1]octane motif with full control of stereochemistry. Using an appropriately substituted aryl group, the route enables the synthesis of any given compound from the class.


Bioorganic & Medicinal Chemistry Letters | 2013

From partial to full agonism: Identification of a novel 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole as a full agonist of the human GPR119 receptor

Kentaro Futatsugi; Vincent Mascitti; Cristiano R. W. Guimarães; Nao Morishita; Cuiman Cai; Michael Paul Deninno; Hua Gao; Michael Hamilton; Richard F. Hank; Anthony R. Harris; Daniel W. Kung; Sophie Y. Lavergne; Bruce Allen Lefker; Michael G. Lopaze; Kim F. McClure; Michael John Munchhof; Cathy Préville; Ralph P. Robinson; Stephen W. Wright; Paul D. Bonin; Peter Cornelius; Yue Chen; Amit S. Kalgutkar

A novel GPR119 agonist based on the 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole scaffold was designed through lead optimization starting from pyrazole-based GPR119 agonist 1. The design is centered on the conformational restriction of the core scaffold, while minimizing the change in spatial relationships of two key pharmacophoric elements (piperidine-carbamate and aryl sulfone).


Journal of Medicinal Chemistry | 2013

Spirolactam-Based Acetyl-CoA Carboxylase Inhibitors: Toward Improved Metabolic Stability of a Chromanone Lead Structure

David A. Griffith; Robert L. Dow; Kim Huard; David J. Edmonds; Scott W. Bagley; Jana Polivkova; Dongxiang Zeng; Carmen N. Garcia-Irizarry; James A. Southers; William Esler; Paul Amor; Kathrine Loomis; Kirk McPherson; Kevin B. Bahnck; Cathy Préville; Tereece Banks; Dianna E. Moore; Alan M. Mathiowetz; Elnaz Menhaji-Klotz; Aaron Smith; Shawn D. Doran; David A. Beebe; Matthew F. Dunn

Acetyl-CoA carboxylase (ACC) catalyzes the rate-determining step in de novo lipogenesis and plays a crucial role in the regulation of fatty acid oxidation. Alterations in lipid metabolism are believed to contribute to insulin resistance; thus inhibition of ACC offers a promising option for intervention in type 2 diabetes mellitus. Herein we disclose a series of ACC inhibitors based on a spirocyclic pyrazololactam core. The lactam series has improved chemical and metabolic stability relative to our previously reported pyrazoloketone series, while retaining potent inhibition of ACC1 and ACC2. Optimization of the pyrazole and amide substituents led to quinoline amide 21, which was advanced to preclinical development.


Chemical Research in Toxicology | 2011

Intrinsic electrophilicity of a 4-substituted-5-cyano-6-(2-methylpyridin-3-yloxy)pyrimidine derivative: structural characterization of glutathione conjugates in vitro.

Amit S. Kalgutkar; Vincent Mascitti; Raman Sharma; Gregory W. Walker; Tim Ryder; Thomas S. McDonald; Yue Chen; Cathy Préville; Arindrajit Basak; Kim F. McClure; Jeffrey T. Kohrt; Ralph P. Robinson; Michael John Munchhof; Peter Cornelius

Isopropyl 9-anti-[5-cyano-6-(2-methyl-pyridin-3-yloxy)-pyrimidin-4-yloxy]-3-oxa-7-aza-bicyclo[3.3.1]nonane-7-carboxylate (1) represents a prototypic compound from a lead chemical series of G protein-coupled receptor 119 agonists, intended for treatment of type 2 diabetes. When compound 1 was incubated with NADPH-supplemented human liver microsomes in the presence of glutathione, two thioether conjugates M4-1 and M5-1 were observed. Omission of NADPH from the microsomal incubations prevented the formation of M5-1 but not M4-1. The formation of M4-1 was also discerned in incubations of 1 and glutathione with human liver cytosol, partially purified glutathione transferase, and in phosphate buffer at pH 7.4. M4-1 was isolated, and its structure ascertained from LC-MS/MS and NMR analysis. The mass spectral and NMR data suggested that M4-1 was obtained from a nucleophilic displacement of the 6-(2-methylpyridin-3-yloxy) group in 1 by glutathione. In addition, mass spectral studies revealed that M5-1 was derived from an analogous displacement reaction on a monohydroxylated metabolite of 1; the regiochemistry of hydroxylation was established to be on the isopropyl group. Of great interest were the findings that replacement of the 5-cyano group in 1 with a 5-methyl group resulted in 2, which was practically inert toward reaction with glutathione. This observation suggests that the electron-withdrawing potential of the C5 cyano group serves to increase the electrophilicity of the C6 carbon (via stabilization of the transition state) and favors reaction with the nucleophilic thiol. The mechanistic insights gained from these studies should assist medicinal chemistry efforts toward the design of analogs that retain primary pharmacology but are latent toward reaction with biological nucleophiles, thus mitigating the potential for toxicological outcome due to adduction with glutathione or proteins.


Angewandte Chemie | 2013

Regioselective Hydroarylations and Parallel Kinetic Resolution of Vince Lactam

Adam S. Kamlet; Cathy Préville; Kathleen A. Farley; David W. Piotrowski

Two regioselective and complementary hydroarylation reactions of an unsymmetrical cyclic olefin have been developed. The products can be transformed in one step into constrained γ-amino acids. Regioselective arylation of Vince lactam is controlled by the choice of phosphine ligand enantiomer and the substituent on the amide nitrogen atom. The method was extended to a general regiodivergent parallel kinetic resolution of the racemic lactam.


Journal of the American Chemical Society | 2017

Efficient Liver Targeting by Polyvalent Display of a Compact Ligand for the Asialoglycoprotein Receptor

Carlos A. Sanhueza; Michael M. Baksh; Benjamin A. Thuma; Marc D. Roy; Sanjay Dutta; Cathy Préville; Boris A. Chrunyk; Kevin Beaumont; Robert Dullea; Mark Ammirati; Shenping Liu; David F. Gebhard; James E. Finley; Christopher T. Salatto; Amanda King-Ahmad; Ingrid A. Stock; Karen Atkinson; Benjamin Reidich; Wen Lin; Rajesh Kumar; Meihua Tu; Elnaz Menhaji-Klotz; David A. Price; Spiros Liras; M. G. Finn; Vincent Mascitti

A compact and stable bicyclic bridged ketal was developed as a ligand for the asialoglycoprotein receptor (ASGPR). This compound showed excellent ligand efficiency, and the molecular details of binding were revealed by the first X-ray crystal structures of ligand-bound ASGPR. This analogue was used to make potent di- and trivalent binders of ASGPR. Extensive characterization of the function of these compounds showed rapid ASGPR-dependent cellular uptake in vitro and high levels of liver/plasma selectivity in vivo. Assessment of the biodistribution in rodents of a prototypical Alexa647-labeled trivalent conjugate showed selective hepatocyte targeting with no detectable distribution in nonparenchymal cells. This molecule also exhibited increased ASGPR-directed hepatocellular uptake and prolonged retention compared to a similar GalNAc derived trimer conjugate. Selective release in the liver of a passively permeable small-molecule cargo was achieved by retro-Diels-Alder cleavage of an oxanorbornadiene linkage, presumably upon encountering intracellular thiol. Therefore, the multicomponent construct described here represents a highly efficient delivery vehicle to hepatocytes.


Acta Crystallographica Section E-structure Reports Online | 2010

2-[4-Chloro-3-(4-ethoxy-benz-yl)phen-yl]-1,3-dithiane.

Brian Samas; Cathy Préville; Benjamin A. Thuma; Vincent Mascitti

In the title compound, C19H21ClOS2, the dithiane ring adopts a chair conformation. The dihedral angle between the benzene rings is 87.88 (4)°. In the crystal, inversion dimmers linked by pairs of C—H⋯O interactions occur.

Collaboration


Dive into the Cathy Préville's collaboration.

Researchain Logo
Decentralizing Knowledge