Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cátia Igreja is active.

Publication


Featured researches published by Cátia Igreja.


Genes & Development | 2011

CUP promotes deadenylation and inhibits decapping of mRNA targets

Cátia Igreja; Elisa Izaurralde

CUP is an eIF4E-binding protein (4E-BP) that represses the expression of specific maternal mRNAs prior to their posterior localization. Here, we show that CUP employs multiple mechanisms to repress the expression of target mRNAs. In addition to inducing translational repression, CUP maintains mRNA targets in a repressed state by promoting their deadenylation and protects deadenylated mRNAs from further degradation. Translational repression and deadenylation are independent of eIF4E binding and require both the middle and C-terminal regions of CUP, which collectively we termed the effector domain. This domain associates with the deadenylase complex CAF1-CCR4-NOT and decapping activators. Accordingly, in isolation, the effector domain is a potent trigger of mRNA degradation and promotes deadenylation, decapping and decay. However, in the context of the full-length CUP protein, the decapping and decay mediated by the effector domain are inhibited, and target mRNAs are maintained in a deadenylated, repressed form. Remarkably, an N-terminal regulatory domain containing a noncanonical eIF4E-binding motif is required to protect CUP-associated mRNAs from decapping and further degradation, suggesting that this domain counteracts the activity of the effector domain. Our findings indicate that the mode of action of CUP is more complex than previously thought and provide mechanistic insight into the regulation of mRNA expression by 4E-BPs.


Journal of Cell Biology | 2010

HPat provides a link between deadenylation and decapping in metazoa

Gabrielle Haas; Joerg E. Braun; Cátia Igreja; Felix Tritschler; Tadashi Nishihara; Elisa Izaurralde

A proline-rich region in the Drosophila Pat1 homologue works with the proteins C-terminal domain to recruit decapping and deadenylase complexes to target mRNAs.


Molecular Cell | 2015

Molecular Architecture of 4E-BP Translational Inhibitors Bound to Eif4E.

Daniel Peter; Cátia Igreja; Ramona Weber; Lara Wohlbold; Catrin Weiler; Linda Ebertsch; Oliver Weichenrieder; Elisa Izaurralde

The eIF4E-binding proteins (4E-BPs) represent a diverse class of translation inhibitors that are often deregulated in cancer cells. 4E-BPs inhibit translation by competing with eIF4G for binding to eIF4E through an interface that consists of canonical and non-canonical eIF4E-binding motifs connected by a linker. The lack of high-resolution structures including the linkers, which contain phosphorylation sites, limits our understanding of how phosphorylation inhibits complex formation. Furthermore, the binding mechanism of the non-canonical motifs is poorly understood. Here, we present structures of human eIF4E bound to 4E-BP1 and fly eIF4E bound to Thor, 4E-T, and eIF4G. These structures reveal architectural elements that are unique to 4E-BPs and provide insight into the consequences of phosphorylation. Guided by these structures, we designed and crystallized a 4E-BP mimic that shows increased repressive activity. Our studies pave the way for the rational design of 4E-BP mimics as therapeutic tools to decrease translation during oncogenic transformation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

DCP1 forms asymmetric trimers to assemble into active mRNA decapping complexes in metazoa

Felix Tritschler; Joerg E. Braun; Carina Motz; Cátia Igreja; Gabrielle Haas; Vincent Truffault; Elisa Izaurralde; Oliver Weichenrieder

DCP1 stimulates the decapping enzyme DCP2, which removes the mRNA 5′ cap structure committing mRNAs to degradation. In multicellular eukaryotes, DCP1-DCP2 interaction is stabilized by additional proteins, including EDC4. However, most information on DCP2 activation stems from studies in S. cerevisiae, which lacks EDC4. Furthermore, DCP1 orthologs from multicellular eukaryotes have a C-terminal extension, absent in fungi. Here, we show that in metazoa, a conserved DCP1 C-terminal domain drives DCP1 trimerization. Crystal structures of the DCP1-trimerization domain reveal an antiparallel assembly comprised of three kinked α-helices. Trimerization is required for DCP1 to be incorporated into active decapping complexes and for efficient mRNA decapping in vivo. Our results reveal an unexpected connectivity and complexity of the mRNA decapping network in multicellular eukaryotes, which likely enhances opportunities for regulating mRNA degradation.


The EMBO Journal | 2010

The C‐terminal α–α superhelix of Pat is required for mRNA decapping in metazoa

Joerg E. Braun; Felix Tritschler; Gabrielle Haas; Cátia Igreja; Vincent Truffault; Oliver Weichenrieder; Elisa Izaurralde

Pat proteins regulate the transition of mRNAs from a state that is translationally active to one that is repressed, committing targeted mRNAs to degradation. Pat proteins contain a conserved N‐terminal sequence, a proline‐rich region, a Mid domain and a C‐terminal domain (Pat‐C). We show that Pat‐C is essential for the interaction with mRNA decapping factors (i.e. DCP2, EDC4 and LSm1–7), whereas the P‐rich region and Mid domain have distinct functions in modulating these interactions. DCP2 and EDC4 binding is enhanced by the P‐rich region and does not require LSm1–7. LSm1–7 binding is assisted by the Mid domain and is reduced by the P‐rich region. Structural analysis revealed that Pat‐C folds into an α–α superhelix, exposing conserved and basic residues on one side of the domain. This conserved and basic surface is required for RNA, DCP2, EDC4 and LSm1–7 binding. The multiplicity of interactions mediated by Pat‐C suggests that certain of these interactions are mutually exclusive and, therefore, that Pat proteins switch decapping partners allowing transitions between sequential steps in the mRNA decapping pathway.


Nature Communications | 2014

4E-BPs require non-canonical 4E-binding motifs and a lateral surface of eIF4E to repress translation.

Cátia Igreja; Daniel Peter; Catrin Weiler; Elisa Izaurralde

eIF4E-binding proteins (4E-BPs) are a widespread class of translational regulators that share a canonical (C) eIF4E-binding motif (4E-BM) with eIF4G. Consequently, 4E-BPs compete with eIF4G for binding to the dorsal surface on eIF4E to inhibit translation initiation. Some 4E-BPs contain non-canonical 4E-BMs (NC 4E-BMs), but the contribution of these motifs to the repressive mechanism—and whether these motifs are present in all 4E-BPs—remains unknown. Here, we show that the three annotated Drosophila melanogaster 4E-BPs contain NC 4E-BMs. These motifs bind to a lateral surface on eIF4E that is not used by eIF4G. This distinct molecular recognition mode is exploited by 4E-BPs to dock onto eIF4E–eIF4G complexes and effectively displace eIF4G from the dorsal surface of eIF4E. Our data reveal a hitherto unrecognized role for the NC4E-BMs and the lateral surface of eIF4E in 4E-BP-mediated translational repression, and suggest that bipartite 4E-BP mimics might represent efficient therapeutic tools to dampen translation during oncogenic transformation.


Molecular Cell | 2016

The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation.

S. Grüner; Daniel Peter; Ramona Weber; Lara Wohlbold; Min-Yi Chung; Oliver Weichenrieder; Eugene Valkov; Cátia Igreja; Elisa Izaurralde

Eukaryotic initiation factor 4G (eIF4G) plays a central role in translation initiation through its interactions with the cap-binding protein eIF4E. This interaction is a major drug target for repressing translation and is naturally regulated by 4E-binding proteins (4E-BPs). 4E-BPs and eIF4G compete for binding to the eIF4E dorsal surface via a shared canonical 4E-binding motif, but also contain auxiliary eIF4E-binding sequences, which were assumed to contact non-overlapping eIF4E surfaces. However, it is unknown how metazoan eIF4G auxiliary sequences bind eIF4E. Here, we describe crystal structures of human and Drosophila melanogaster eIF4E-eIF4G complexes, which unexpectedly reveal that the eIF4G auxiliary sequences bind to the lateral surface of eIF4E, using a similar mode to that of 4E-BPs. Our studies provide a molecular model of the eIF4E-eIF4G complex, shed light on the competition mechanism of 4E-BPs, and enable the rational design of selective eIF4G inhibitors to dampen dysregulated translation in disease.


Genes & Development | 2015

Mextli proteins use both canonical bipartite and novel tripartite binding modes to form eIF4E complexes that display differential sensitivity to 4E-BP regulation

Daniel Peter; Ramona Weber; Carolin Köne; Min-Yi Chung; Linda Ebertsch; Vincent Truffault; Oliver Weichenrieder; Cátia Igreja; Elisa Izaurralde

The eIF4E-binding proteins (4E-BPs) are a diverse class of translation regulators that share a canonical eIF4E-binding motif (4E-BM) with eIF4G. Consequently, they compete with eIF4G for binding to eIF4E, thereby inhibiting translation initiation. Mextli (Mxt) is an unusual 4E-BP that promotes translation by also interacting with eIF3. Here we present the crystal structures of the eIF4E-binding regions of the Drosophila melanogaster (Dm) and Caenorhabditis elegans (Ce) Mxt proteins in complex with eIF4E in the cap-bound and cap-free states. The structures reveal unexpected evolutionary plasticity in the eIF4E-binding mode, with a classical bipartite interface for Ce Mxt and a novel tripartite interface for Dm Mxt. Both interfaces comprise a canonical helix and a noncanonical helix that engage the dorsal and lateral surfaces of eIF4E, respectively. Remarkably, Dm Mxt contains a C-terminal auxiliary helix that lies anti-parallel to the canonical helix on the eIF4E dorsal surface. In contrast to the eIF4G and Ce Mxt complexes, the Dm eIF4E-Mxt complexes are resistant to competition by bipartite 4E-BPs, suggesting that Dm Mxt can bind eIF4E when eIF4G binding is inhibited. Our results uncovered unexpected diversity in the binding modes of 4E-BPs, resulting in eIF4E complexes that display differential sensitivity to 4E-BP regulation.


Archive | 2016

Evolution of eIF4E-interacting proteins

Greco Hernández; Kathleen M. Gillespie; Tsvetan R. Bachvaroff; Rosemary Jagus; Cátia Igreja; Daniel Peter; Manuel Bulfoni; Bertrand Cosson

Most eukaryotic mRNAs are translated by a cap-dependent mechanism, which requires recognition of the 5′ cap structure of the mRNA by eIF4E. Due to its crucial role in translation, eIF4E is a major target of regulation. One of the most prominent mechanisms regulating eIF4E activity is through its interaction with numerous proteins termed eIF4E-interacting proteins (4E-IPs). By competing with eIF4G for eIF4E binding, 4E-IPs act in general as translational repressors, although additional functions have been described. In this chapter, we discuss recent functional, phylogenetic and structural evidence that throws light on the evolution of 4E-IPs and evolutionary recurring themes. Phylogenetic analysis suggests that the first identified 4E-IPs, the mammalian 4E-binding proteins (4E-BPs), appeared as a single-copy gene in the last common ancestor of Amoebozoa, Glaucocystophyta, Fungi and Metazoa. 4E-BP is found in all Metazoans except Nematoda. It is found in glaucocystophytes, but has been lost in Viridiplantae. It is lost in most fungi, although it can be found in basidiomycetes as well as some glomeromycetes and zygomycetes. 4E-BP has been duplicated in vertebrates with up to six cognates found. 4E-BP seems to be absent, not lost, in most protist lineages since it has not been found in lineages thought to be at the root of the eukaryotes. Additional 4E-IPs, unrelated to 4E-BP, evolved independently in a lineage-specific manner, perhaps by a process of molecular tinkering, i.e., by gene duplication of preexisting proteins from different cellular processes and later in evolution incorporated into translation. Multiple duplications of eIF4E during eukaryotic radiation might have contributed, to some extent, to 4E-IP’s evolution. Some 4E-IPs are shared by different taxa, such as the eIF4E transporter, neuroguidin and Maskin, which are present in Amoebozoa, some/all fungi and the metazoan lineages. Unique lineage-specific 4E-IPs have evolved independently in some taxonomic groups such as Eap1p and p20 in yeasts, SPN-2 in C. elegans and Bicoid in higher Dipterans. Neuroguidin is the only 4E-IP represented in all eukaryotic lineages. Despite the diversity in function, sequence and origin, recent studies have revealed that 4E-IPs exhibit common binding principles when complexed with eIF4E.


Genes & Development | 2017

GIGYF1/2 proteins use auxiliary sequences to selectively bind to 4EHP and repress target mRNA expression

Daniel Peter; Ramona Weber; Felix Sandmeir; Lara Wohlbold; Sigrun Helms; Praveen Bawankar; Eugene Valkov; Cátia Igreja; Elisa Izaurralde

Collaboration


Dive into the Cátia Igreja's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge