Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver Weichenrieder is active.

Publication


Featured researches published by Oliver Weichenrieder.


The EMBO Journal | 2006

Structure and E3‐ligase activity of the Ring–Ring complex of Polycomb proteins Bmi1 and Ring1b

Gretel Buchwald; Petra van der Stoop; Oliver Weichenrieder; Anastassis Perrakis; Maarten van Lohuizen; Titia K. Sixma

Polycomb group proteins Ring1b and Bmi1 (B‐cell‐specific Moloney murine leukaemia virus integration site 1) are critical components of the chromatin modulating PRC1 complex. Histone H2A ubiquitination by the PRC1 complex strongly depends on the Ring1b protein. Here we show that the E3‐ligase activity of Ring1b on histone H2A is enhanced by Bmi1 in vitro. The N‐terminal Ring‐domains are sufficient for this activity and Ring1a can replace Ring1b. E2 enzymes UbcH5a, b, c or UbcH6 support this activity with varying processivity and selectivity. All four E2s promote autoubiquitination of Ring1b without affecting E3‐ligase activity. We solved the crystal structure of the Ring–Ring heterodimeric complex of Ring1b and Bmi1. In the structure the arrangement of the Ring‐domains is similar to another H2A E3 ligase, the BRCA1/BARD1 complex, but complex formation depends on an N‐terminal arm of Ring1b that embraces the Bmi1 Ring‐domain. Mutation of a critical residue in the E2/E3 interface shows that catalytic activity resides in Ring1b and not in Bmi1. These data provide a foundation for understanding the critical enzymatic activity at the core of the PRC1 polycomb complex, which is implicated in stem cell maintenance and cancer.


Nature | 2000

Structure and assembly of the Alu domain of the mammalian signal recognition particle

Oliver Weichenrieder; Klemens Wild; Katharina Strub; Stephen Cusack

The Alu domain of the mammalian signal recognition particle (SRP) comprises the heterodimer of proteins SRP9 and SRP14 bound to the 5′ and 3′ terminal sequences of SRP RNA. It retards the ribosomal elongation of signal-peptide-containing proteins before their engagement with the translocation machinery in the endoplasmic reticulum. Here we report two crystal structures of the heterodimer SRP9/14 bound either to the 5′ domain or to a construct containing both 5′ and 3′ domains. We present a model of the complete Alu domain that is consistent with extensive biochemical data. SRP9/14 binds strongly to the conserved core of the 5′ domain, which forms a U-turn connecting two helical stacks. Reversible docking of the more weakly bound 3′ domain might be functionally important in the mechanism of translational regulation. The Alu domain structure is probably conserved in other cytoplasmic ribonucleoprotein particles and retroposition intermediates containing SRP9/14-bound RNAs transcribed from Alu repeats or related elements in genomic DNA.


Molecular Cell | 2014

A DDX6-CNOT1 Complex and W-Binding Pockets in CNOT9 Reveal Direct Links between miRNA Target Recognition and Silencing

Ying Chen; Andreas Boland; Duygu Kuzuoğlu-Öztürk; Praveen Bawankar; Belinda Loh; Chung-Te Chang; Oliver Weichenrieder; Elisa Izaurralde

CCR4-NOT is a major effector complex in miRNA-mediated gene silencing. It is recruited to miRNA targets through interactions with tryptophan (W)-containing motifs in TNRC6/GW182 proteins and is required for both translational repression and degradation of miRNA targets. Here, we elucidate the structural basis for the repressive activity of CCR4-NOT and its interaction with TNRC6/GW182s. We show that the conserved CNOT9 subunit attaches to a domain of unknown function (DUF3819) in the CNOT1 scaffold. The resulting complex provides binding sites for TNRC6/GW182, and its crystal structure reveals tandem W-binding pockets located in CNOT9. We further show that the CNOT1 MIF4G domain interacts with the C-terminal RecA domain of DDX6, a translational repressor and decapping activator. The crystal structure of this complex demonstrates striking similarity to the eIF4G-eIF4A complex. Together, our data provide the missing physical links in a molecular pathway that connects miRNA target recognition with translational repression, deadenylation, and decapping.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Structural basis for RNA 3′-end recognition by Hfq

Evelyn Sauer; Oliver Weichenrieder

The homohexameric (L)Sm protein Hfq is a central mediator of small RNA-based gene regulation in bacteria. Hfq recognizes small regulatory RNAs (sRNAs) specifically, despite their structural diversity. This specificity could not be explained by previously described RNA-binding modes of Hfq. Here we present a distinct and preferred mode of Hfq–RNA interaction that involves the direct recognition of a uridine-rich RNA 3′ end. This feature is common in bacterial RNA transcripts as a consequence of Rho-independent transcription termination and hence likely contributes significantly to the general recognition of sRNAs by Hfq. Isothermal titration calorimetry shows nanomolar affinity between Salmonella typhimurium Hfq and a hexauridine substrate. We determined a crystal structure of the complex that reveals a constricted RNA backbone conformation in the proximal RNA-binding site of Hfq, allowing for a direct protein contact of the 3′ hydroxyl group. A free 3′ hydroxyl group is crucial for the high-affinity interaction with Hfq also in the context of a full-length sRNA substrate, RybB. The capacity of Hfq to occupy and sequester the RNA 3′ end has important implications for the mechanisms by which Hfq is thought to affect sRNA stability, turnover, and regulation.


Nucleic Acids Research | 2006

Thermodynamic characterization of an engineered tetracycline-binding riboswitch

Michael Müller; Julia E. Weigand; Oliver Weichenrieder; Beatrix Suess

Riboswitches reflect a novel concept in gene regulation that is particularly suited for technological adaptation. Therefore, we characterized thermodynamically the ligand binding properties of a synthetic, tetracycline (tc)-binding RNA aptamer, which regulates gene expression in a dose-dependent manner when inserted into the untranslated region of an mRNA. In vitro, one molecule of tc is bound by one molecule of partially pre-structured and conformationally homogeneous apo-RNA. The dissociation constant of 770 pM, as determined by fluorimetry, is the lowest reported so far for a small molecule-binding RNA aptamer. Additional calorimetric analysis of RNA point mutants and tc derivatives identifies functional groups crucial for the interaction and including their respective enthalpic and entropic contributions we can propose detailed structural and functional roles for certain groups. The conclusions are consistent with mutational analyses in vivo and support the hypothesis that tc-binding reinforces the structure of the RNA aptamer, preventing the scanning ribosome from melting it efficiently.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame

Elena Khazina; Oliver Weichenrieder

Non-LTR retrotransposons (NLRs) are a unique class of mobile genetic elements that have significant impact on the evolution of eukaryotic genomes. However, the molecular details and functions of their encoded proteins, in particular of the accessory ORF1p proteins, are poorly understood. Here, we identify noncanonical RNA-recognition-motifs (RRMs) in several phylogenetically unrelated NLR ORF1p proteins. This provides an explanation for their RNA-binding properties and clearly shows that they are not related to the retroviral nucleocapsid protein Gag, despite the frequent presence of CCHC zinc knuckles. In particular, we characterize the ORF1p protein of the human long interspersed nuclear element 1 (LINE-1 or L1). We show that L1ORF1p is a multidomain protein, consisting of a coiled coil (cc), RRM, and C-terminal domain (CTD). Most importantly, we solved the crystal structure of the RRM domain, which is characterized by extended loops stabilized by unique salt bridges. Furthermore, we demonstrate that L1ORF1p trimerizes via its N-terminal cc domain, and we suggest that this property is functionally important for all homologues. The formation of distinct complexes with single-stranded nucleic acids requires the presence of the RRM and CTD domains on the same polypeptide chain as well as their close cooperation. Finally, the phylogenetic analysis of mammalian L1ORF1p shows an ancient origin of the RRM domain and supports a modular evolution of NLRs.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition

Evelyn Sauer; Steffen Schmidt; Oliver Weichenrieder

The bacterial Sm-like protein Hfq is a central player in the control of bacterial gene expression. Hfq forms complexes with small regulatory RNAs (sRNAs) that use complementary “seed” sequences to target specific mRNAs. Hfq forms hexameric rings, which preferably bind uridine-rich RNA 3′ ends on their proximal surface and adenine-rich sequences on their distal surface. However, many reported properties of Hfq/sRNA complexes could not be explained by these RNA binding modes. Here, we use the RybB sRNA to identify the lateral surface of Hfq as a third, independent RNA binding surface. A systematic mutational analysis and competition experiments demonstrate that the lateral sites have a preference for and are sufficient to bind the sRNA “body,” including the seed sequence. Furthermore, we detect significant structural rearrangements of the Hfq/sRNA complex upon mRNA target recognition that lead to a release of the seed sequence, or of the entire sRNA molecule in case of an unfavorable 3′ end. Consequently, we propose a molecular model for the Hfq/sRNA complex, where the sRNA 3′ end is anchored in the proximal site of Hfq, whereas the sRNA body, including the seed sequence, is bound by up to six of the lateral sites. In contrast to previously proposed arrangements, the presented model explains how Hfq can protect large parts of the sRNA body while still allowing a rapid recycling of sRNAs. Furthermore, our model suggests molecular mechanisms for the function of Hfq as an RNA chaperone and for the molecular events that are initiated upon mRNA target recognition.


Molecular Cell | 2009

Structural Basis for the Mutually Exclusive Anchoring of P Body Components Edc3 and Tral to the Dead Box Protein Ddx6/Me31B.

Felix Tritschler; Joerg E. Braun; Ana Eulalio; Vincent Truffault; Elisa Izaurralde; Oliver Weichenrieder

The DEAD box helicase DDX6/Me31B functions in translational repression and mRNA decapping. How particular RNA helicases are recruited specifically to distinct functional complexes is poorly understood. We present the crystal structure of the DDX6 C-terminal RecA-like domain bound to a highly conserved FDF sequence motif in the decapping activator EDC3. The FDF peptide adopts an alpha-helical conformation upon binding to DDX6, occupying a shallow groove opposite to the DDX6 surface involved in RNA binding and ATP hydrolysis. Mutagenesis of Me31B shows the relevance of the FDF interaction surface both for Me31Bs accumulation in P bodies and for its ability to repress the expression of bound mRNAs. The translational repressor Tral contains a similar FDF motif. Together with mutational and competition studies, the structure reveals why the interactions of Me31B with EDC3 and Tral are mutually exclusive and how the respective decapping and translational repressor complexes might hook onto an mRNA substrate.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Crystal Structure of the Mid-Piwi Lobe of a Eukaryotic Argonaute Protein

Andreas Boland; Eric Huntzinger; Steffen Schmidt; Elisa Izaurralde; Oliver Weichenrieder

Argonaute proteins (AGOs) are essential effectors in RNA-mediated gene silencing pathways. They are characterized by a bilobal architecture, in which one lobe contains the N-terminal and PAZ domains and the other contains the MID and PIWI domains. Here, we present the first crystal structure of the MID-PIWI lobe from a eukaryotic AGO, the Neurospora crassa QDE-2 protein. Compared to prokaryotic AGOs, the domain orientation is conserved, indicating a conserved mode of nucleic acid binding. The PIWI domain shows an adaptable surface loop next to a eukaryote-specific α-helical insertion, which are both likely to contact the PAZ domain in a conformation-dependent manner to sense the functional state of the protein. The MID-PIWI interface is hydrophilic and buries residues that were previously thought to participate directly in the allosteric regulation of guide RNA binding. The interface includes the binding pocket for the guide RNA 5′ end, and residues from both domains contribute to binding. Accordingly, micro-RNA (miRNA) binding is particularly sensitive to alteration in the MID-PIWI interface in Drosophila melanogaster AGO1 in vivo. The structure of the QDE-2 MID-PIWI lobe provides molecular and mechanistic insight into eukaryotic AGOs and has significant implications for understanding the role of these proteins in silencing.


EMBO Reports | 2010

Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein

Andreas Boland; Felix Tritschler; Susanne Heimstädt; Elisa Izaurralde; Oliver Weichenrieder

Argonaute (AGO) proteins are core components of RNA‐induced silencing complexes and have essential roles in RNA‐mediated gene silencing. They are characterized by a bilobal architecture, consisting of one lobe containing the amino‐terminal and PAZ domains and another containing the MID and PIWI domains. Except for the PAZ domain, structural information on eukaryotic AGO domains is not yet available. In this study, we report the crystal structure of the MID domain of the eukaryotic AGO protein QDE‐2 from Neurospora crassa. This domain adopts a Rossmann‐like fold and recognizes the 5′‐terminal nucleotide of a guide RNA in a manner similar to its prokaryotic counterparts. The 5′‐nucleotide‐binding site shares common residues with a second, adjacent ligand‐binding site, suggesting a mechanism for the cooperative binding of ligands to the MID domain of eukaryotic AGOs.

Collaboration


Dive into the Oliver Weichenrieder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Cusack

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugene Valkov

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge