Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catrin E. Moore is active.

Publication


Featured researches published by Catrin E. Moore.


Infection and Immunity | 2002

Virulent Combinations of Adhesin and Toxin Genes in Natural Populations of Staphylococcus aureus

Sharon J. Peacock; Catrin E. Moore; Anita Justice; Maria Kantzanou; Lisa Story; Kathryn Mackie; Gael O'Neill; Nicholas P. J. Day

ABSTRACT Most cases of severe Staphylococcus aureus disease cannot be explained by the action of a single virulence determinant, and it is likely that a number of factors act in combination during the infective process. This study examined the relationship between disease in humans and a large number of putative virulence determinants, both individually and in combination. S. aureus isolates (n = 334) from healthy blood donors and from patients with invasive disease were compared for variation in the presence of 33 putative virulence determinants. After adjusting for the effect of clonality, seven determinants (fnbA, cna, sdrE, sej, eta, hlg, and ica) were significantly more common in invasive isolates. All seven factors contributed independently to virulence. No single factor predominated as the major predictor of virulence, their effects appearing to be cumulative. No combinations of the seven genes were either more or less likely to cause disease than others with the same number of virulence-associated genes. There was evidence of considerable horizontal transfer of genes on a background of clonality. Our findings also suggested that allelic variants of a polymorphic locus can make different contributions to the disease process, further study of which is likely to expand our understanding of staphylococcal disease pathogenesis.


Nature Genetics | 2007

A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis.

Chiea C. Khor; Stephen Chapman; Fredrik O. Vannberg; Aisling Dunne; Caroline Murphy; Edmund Y. S. Ling; Angela J. Frodsham; Andrew Walley; Otto Kyrieleis; Amir R. Khan; Christophe Aucan; Shelley Segal; Catrin E. Moore; Kyle Knox; S J Campbell; Christian Lienhardt; Anthony Scott; Peter Aaby; Oumou Sow; Robert T Grignani; Jackson Sillah; Giorgio Sirugo; N. Peshu; Thomas N. Williams; Kathryn Maitland; Robert J. O. Davies; Dominic P. Kwiatkowski; Nicholas P. J. Day; Djamel Yala; Derrick W. Crook

Toll-like receptors (TLRs) and members of their signaling pathway are important in the initiation of the innate immune response to a wide variety of pathogens. The adaptor protein Mal (also known as TIRAP), encoded by TIRAP (MIM 606252), mediates downstream signaling of TLR2 and TLR4 (refs. 4–6). We report a case-control study of 6,106 individuals from the UK, Vietnam and several African countries with invasive pneumococcal disease, bacteremia, malaria and tuberculosis. We genotyped 33 SNPs, including rs8177374, which encodes a leucine substitution at Ser180 of Mal. We found that heterozygous carriage of this variant associated independently with all four infectious diseases in the different study populations. Combining the study groups, we found substantial support for a protective effect of S180L heterozygosity against these infectious diseases (N = 6,106; overall P = 9.6 × 10−8). We found that the Mal S180L variant attenuated TLR2 signal transduction.


The Lancet | 2002

MBL genotype and risk of invasive pneumococcal disease: a case-control study

Suchismita Roy; Kyle Knox; Shelley Segal; David Griffiths; Catrin E. Moore; Kenneth I. Welsh; Alexander K. Smarason; Nicholas P. J. Day; William L. McPheat; Derrick W. Crook; Adrian V. S. Hill

BACKGROUND Streptococcus pneumoniae is a major cause of morbidity and mortality in developed and developing countries. No common genetic determinants of susceptibility have been defined. Mannose-binding lectin (MBL) is a key mediator of innate host immunity that activates the complement pathway and directly opsonises some infectious pathogens. Mutations in three codons in the MBL gene have been identified, and individuals homozygous for a mutant genotype have very little or no serum MBL. We did a case-control study in the UK to assess whether these mutant genotypes were associated with invasive pneumococcal disease. METHODS The frequencies of genotypes defined by the three mutations in codons 52, 54, and 57, and a functional promoter polymorphism at -221, were compared in a two-stage study of 337 patients with invasive pneumococcal disease and 1032 controls. All individuals were recruited from an ethnically homogeneous white population in Oxfordshire, UK. Patients had S pneumoniae isolated from a normally sterile site. FINDINGS In our initial set of participants, 28 (12%) of 229 patients and 18 (5%) of 353 controls were homozygotes for MBL codon variants (odds ratio 2.59 [95% CI 1.39-4.83], p=0.002). Neither heterozygosity for these codon variants nor the promoter polymorphism was associated with susceptibility. In a confirmatory study, 11 (10%) of 108 patients were MBL homozygotes compared with 36 (5%) of 679 controls (p=0.046). INTERPRETATION Homozygotes for MBL codon variants, who represent about 5% of north Europeans and north Americans and larger proportions of populations in many developing countries, could be at substantially increased risk of invasive pneumococcal disease.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health

Kathryn E. Holt; Heiman Wertheim; Ruth N. Zadoks; Stephen Baker; Chris A. C.A. Whitehouse; David D. Dance; Adam A. Jenney; Thomas Richard Connor; Li Yang L.Y. Hsu; Juliëtte A. Severin; Sylvain Brisse; Hanwei H. Cao; Jonathan J. Wilksch; Claire Gorrie; Mark B. Schultz; David J. Edwards; Kinh Van Nguyen; Trung Vu Nguyen; Trinh Tuyet Dao; Martijn M. Mensink; Vien V. Le Minh; Nguyen Thi Khanh Nhu; Constance Schultsz; Kuntaman Kuntaman; Paul N. Newton; Catrin E. Moore; Richard A. Strugnell; Nicholas R. Thomson

Significance Klebsiella pneumoniae is rapidly becoming untreatable using last-line antibiotics. It is especially problematic in hospitals, where it causes a range of acute infections. To approach controlling such a bacterium, we first must define what it is and how it varies genetically. Here we have determined the DNA sequence of K. pneumoniae isolates from around the world and present a detailed analysis of these data. We show that there is a wide spectrum of diversity, including variation within shared sequences and gain and loss of whole genes. Using this detailed blueprint, we show that there is an unrecognized association between the possession of specific gene profiles associated with virulence and antibiotic resistance and the differing disease outcomes seen for K. pneumoniae. Klebsiella pneumoniae is now recognized as an urgent threat to human health because of the emergence of multidrug-resistant strains associated with hospital outbreaks and hypervirulent strains associated with severe community-acquired infections. K. pneumoniae is ubiquitous in the environment and can colonize and infect both plants and animals. However, little is known about the population structure of K. pneumoniae, so it is difficult to recognize or understand the emergence of clinically important clones within this highly genetically diverse species. Here we present a detailed genomic framework for K. pneumoniae based on whole-genome sequencing of more than 300 human and animal isolates spanning four continents. Our data provide genome-wide support for the splitting of K. pneumoniae into three distinct species, KpI (K. pneumoniae), KpII (K. quasipneumoniae), and KpIII (K. variicola). Further, for K. pneumoniae (KpI), the entity most frequently associated with human infection, we show the existence of >150 deeply branching lineages including numerous multidrug-resistant or hypervirulent clones. We show K. pneumoniae has a large accessory genome approaching 30,000 protein-coding genes, including a number of virulence functions that are significantly associated with invasive community-acquired disease in humans. In our dataset, antimicrobial resistance genes were common among human carriage isolates and hospital-acquired infections, which generally lacked the genes associated with invasive disease. The convergence of virulence and resistance genes potentially could lead to the emergence of untreatable invasive K. pneumoniae infections; our data provide the whole-genome framework against which to track the emergence of such threats.


Clinical Infectious Diseases | 2005

Risk Factors For Hematogenous Complications of Intravascular Catheter—Associated Staphylococcus aureus Bacteremia

Vance G. Fowler; Anita Justice; Catrin E. Moore; Daniel K. Benjamin; Christopher W. Woods; Steven J. Campbell; L. Barth Reller; G. Ralph Corey; Nicholas P. J. Day; Sharon J. Peacock

BACKGROUND The role of both host and pathogen characteristics in hematogenous seeding following Staphylococcus aureus bacteremia is incompletely understood. METHODS Consecutive patients with intravascular catheter-associated Staphylococcus aureus bacteremia were prospectively recruited over a 91-month period. The corresponding bloodstream isolates were examined for the presence of 35 putative virulence determinants. Patient and bacterial characteristics associated with the development of hematogenous complications (HCs) (i.e., septic arthritis, vertebral osteomyelitis, or endocarditis) were defined. RESULTS HC occurred in 42 (13%) of 324 patients. Patient characteristics at diagnosis that were associated with HC included community onset (relative risk [RR], 2.25; 95% confidence interval [CI], 1.24-4.07; P=.007), increased symptom duration (odds ratio for each day, 1.14; 95% CI, 1.06-1.2; P<.001), presence of a long-term intravascular catheter or noncatheter prosthesis (RR, 4.02; 95% CI, 1.74-9.27; P<.001), hemodialysis dependence (RR, 3.84; 95% CI, 2.08-7.10; P<.001), and higher APACHE II score (P=.02). Bacterial characteristics included sea (RR, 2.03; 95% CI, 1.16-3.55; P=.011) and methicillin-resistant S. aureus (MRSA) (RR, 2.09; 95% CI, 1.19-3.67; P=.015). Subsequent failure to remove a catheter was also associated with HC (RR, 2.28; 95% CI, 1.22-4.27; P=.011). On multivariable analysis, symptom duration, hemodialysis dependence, presence of a long-term intravascular catheter or a noncatheter device, and infection with MRSA remained significantly associated with HC. CONCLUSIONS This investigation identifies 4 host- and pathogen-related risk factors for hematogenous bacterial seeding and reaffirms the importance of prompt catheter removal.


BMJ | 2008

Seroprotection against serogroup C meningococcal disease in adolescents in the United Kingdom: observational study

Matthew D. Snape; Dominic F. Kelly; Susan Lewis; C Banner; L Kibwana; Catrin E. Moore; Linda Diggle; Tessa M. John; Ly-Mee Yu; Ray Borrow; Astrid Borkowski; C Nau; Andrew J. Pollard

Objective To determine the persistence of bactericidal antibody titres following immunisation with serogroup C meningococcal glycoconjugate vaccine at age 6-15 years in order to examine changes in persistence of antibodies with age. Design Observational study. Setting Secondary and tertiary educational institutions in the United Kingdom. Participants Healthy adolescents aged 11-20 years previously immunised between 6 and 15 years of age with one of the three serogroup C meningococcal vaccines. Intervention Serum obtained by venepuncture. Main outcome measures Percentage of participants with (rabbit complement) serum bactericidal antibody titres of at least 1:8; geometric mean titres of serogroup C meningococcal serum bactericidal antibody. Results Five years after immunisation, 84.1% (95% confidence interval 81.6% to 86.3%) of 987 participants had a bactericidal antibody titre of at least 1:8. Geometric mean titres of bactericidal antibody were significantly lower in 11-13 year olds (147, 95% confidence interval 115 to 188) than in 14-16 year olds (300, 237 to 380) and 17-20 year olds (360, 252 to 515) (P<0.0001 for both comparisons). Within these age bands, no significant difference in geometric mean titres of bactericidal antibody between recipients of the different serogroup C meningococcal vaccines was seen. More than 70% of participants had received a vaccine from one manufacturer; in this cohort, geometric mean titres were higher in those immunised at aged 10 years or above than in those immunised before the age of 10. Conclusions Higher concentrations of bactericidal antibody are seen five years after immunisation with serogroup C meningococcal vaccine at age 10 years or above than in younger age groups, possibly owing to immunological maturation. This provides support for adolescent immunisation programmes to generate sustained protection against serogroup C meningococcal disease not only for the vaccine recipients but also, through the maintenance of herd immunity, for younger children.


The Lancet Global Health | 2013

Causes of non-malarial fever in Laos: a prospective study

Mayfong Mayxay; Josée Castonguay-Vanier; Vilada Chansamouth; Audrey Dubot-Pérès; Daniel H. Paris; Rattanaphone Phetsouvanh; Jarasporn Tangkhabuanbutra; Phouvieng Douangdala; Saythong Inthalath; Phoutthalavanh Souvannasing; Günther Slesak; Narongchai Tongyoo; Anisone Chanthongthip; Phonepasith Panyanouvong; Bountoy Sibounheuang; Koukeo Phommasone; Michael F. Dohnt; Darouny Phonekeo; Bouasy Hongvanthong; Sinakhone Xayadeth; Pakapak Ketmayoon; Stuart D. Blacksell; Catrin E. Moore; Scott B. Craig; M.-A. Burns; Frank von Sonnenburg; Andrew Corwin; Xavier de Lamballerie; Iveth J. González; Eva Maria Christophel

Summary Background Because of reductions in the incidence of Plasmodium falciparum malaria in Laos, identification of the causes of fever in people without malaria, and discussion of the best empirical treatment options, are urgently needed. We aimed to identify the causes of non-malarial acute fever in patients in rural Laos. Methods For this prospective study, we recruited 1938 febrile patients, between May, 2008, and December, 2010, at Luang Namtha provincial hospital in northwest Laos (n=1390), and between September, 2008, and December, 2010, at Salavan provincial hospital in southern Laos (n=548). Eligible participants were aged 5–49 years with fever (≥38°C) lasting 8 days or less and were eligible for malaria testing by national guidelines. Findings With conservative definitions of cause, we assigned 799 (41%) patients a diagnosis. With exclusion of influenza, the top five diagnoses when only one aetiological agent per patient was identified were dengue (156 [8%] of 1927 patients), scrub typhus (122 [7%] of 1871), Japanese encephalitis virus (112 [6%] of 1924), leptospirosis (109 [6%] of 1934), and bacteraemia (43 [2%] of 1938). 115 (32%) of 358 patients at Luang Namtha hospital tested influenza PCR-positive between June and December, 2010, of which influenza B was the most frequently detected strain (n=121 [87%]). Disease frequency differed significantly between the two sites: Japanese encephalitis virus infection (p=0·04), typhoid (p=0·006), and leptospirosis (p=0·001) were more common at Luang Namtha, whereas dengue and malaria were more common at Salavan (all p<0·0001). With use of evidence from southeast Asia when possible, we estimated that azithromycin, doxycycline, ceftriaxone, and ofloxacin would have had significant efficacy for 258 (13%), 240 (12%), 154 (8%), and 41 (2%) of patients, respectively. Interpretation Our findings suggest that a wide range of treatable or preventable pathogens are implicated in non-malarial febrile illness in Laos. Empirical treatment with doxycycline for patients with undifferentiated fever and negative rapid diagnostic tests for malaria and dengue could be an appropriate strategy for rural health workers in Laos. Funding Wellcome Trust, WHO–Western Pacific Region, Foundation for Innovative New Diagnostics, US Centers for Disease Control and Prevention.


Clinical and Vaccine Immunology | 2004

Lack of Association between Toll-Like Receptor 2 Polymorphisms and Susceptibility to Severe Disease Caused by Staphylococcus aureus

Catrin E. Moore; Shelley Segal; Anthony R. Berendt; Adrian V. S. Hill; Nicholas P. J. Day

ABSTRACT To investigate a putative link between genetically determined variations in Toll-like receptor 2 (TLR2) and the occurrence of severe Staphylococcus aureus infection, the functional Arg753Gln single-nucleotide polymorphism and the GT repeat microsatellite in the TLR2 gene were examined in a large case-control study. No associations with disease or mortality attributable to these features were found.


Mbio | 2016

Evolutionary History of the Global Emergence of the Escherichia coli Epidemic Clone ST131

Nicole Stoesser; Anna E. Sheppard; Louise Pankhurst; Nicola De Maio; Catrin E. Moore; Robert Sebra; Paul Turner; Luke Anson; Andrew Kasarskis; Elizabeth M. Batty; Veronica N. Kos; Daniel J. Wilson; Rattanaphone Phetsouvanh; David H. Wyllie; Evgeni V. Sokurenko; Amee R. Manges; Timothy J. Johnson; Lance B. Price; Tim Peto; James R. Johnson; Xavier Didelot; A. Sarah Walker; Derrick W. Crook

ABSTRACT Escherichia coli sequence type 131 (ST131) has emerged globally as the most predominant extraintestinal pathogenic lineage within this clinically important species, and its association with fluoroquinolone and extended-spectrum cephalosporin resistance impacts significantly on treatment. The evolutionary histories of this lineage, and of important antimicrobial resistance elements within it, remain unclearly defined. This study of the largest worldwide collection (n = 215) of sequenced ST131 E. coli isolates to date demonstrates that the clonal expansion of two previously recognized antimicrobial-resistant clades, C1/H30R and C2/H30Rx, started around 25 years ago, consistent with the widespread introduction of fluoroquinolones and extended-spectrum cephalosporins in clinical medicine. These two clades appear to have emerged in the United States, with the expansion of the C2/H30Rx clade driven by the acquisition of a blaCTX-M-15-containing IncFII-like plasmid that has subsequently undergone extensive rearrangement. Several other evolutionary processes influencing the trajectory of this drug-resistant lineage are described, including sporadic acquisitions of CTX-M resistance plasmids and chromosomal integration of blaCTX-M within subclusters followed by vertical evolution. These processes are also occurring for another family of CTX-M gene variants more recently observed among ST131, the blaCTX-M-14/14-like group. The complexity of the evolutionary history of ST131 has important implications for antimicrobial resistance surveillance, epidemiological analysis, and control of emerging clinical lineages of E. coli. These data also highlight the global imperative to reduce specific antibiotic selection pressures and demonstrate the important and varied roles played by plasmids and other mobile genetic elements in the perpetuation of antimicrobial resistance within lineages. IMPORTANCE Escherichia coli, perennially a major bacterial pathogen, is becoming increasingly difficult to manage due to emerging resistance to all preferred antimicrobials. Resistance is concentrated within specific E. coli lineages, such as sequence type 131 (ST131). Clarification of the genetic basis for clonally associated resistance is key to devising intervention strategies. We used high-resolution genomic analysis of a large global collection of ST131 isolates to define the evolutionary history of extended-spectrum beta-lactamase production in ST131. We documented diverse contributory genetic processes, including stable chromosomal integrations of resistance genes, persistence and evolution of mobile resistance elements within sublineages, and sporadic acquisition of different resistance elements. Both global distribution and regional segregation were evident. The diversity of resistance element acquisition and propagation within ST131 indicates a need for control and surveillance strategies that target both bacterial strains and mobile genetic elements. Escherichia coli, perennially a major bacterial pathogen, is becoming increasingly difficult to manage due to emerging resistance to all preferred antimicrobials. Resistance is concentrated within specific E. coli lineages, such as sequence type 131 (ST131). Clarification of the genetic basis for clonally associated resistance is key to devising intervention strategies. We used high-resolution genomic analysis of a large global collection of ST131 isolates to define the evolutionary history of extended-spectrum beta-lactamase production in ST131. We documented diverse contributory genetic processes, including stable chromosomal integrations of resistance genes, persistence and evolution of mobile resistance elements within sublineages, and sporadic acquisition of different resistance elements. Both global distribution and regional segregation were evident. The diversity of resistance element acquisition and propagation within ST131 indicates a need for control and surveillance strategies that target both bacterial strains and mobile genetic elements.


The Journal of Infectious Diseases | 2003

Variants of the Chemokine Receptor CCR5 Are Associated with Severe Bronchiolitis Caused by Respiratory Syncytial Virus

Jeremy Hull; Kate Rowlands; Elizabeth Lockhart; Catrin E. Moore; Mike Sharland; Dominic P. Kwiatkowski

Respiratory syncytial virus (RSV) bronchiolitis is characterized by intense inflammation of the airways, and high levels of proinflammatory cytokines and chemokines can be found in respiratory secretions of affected infants. Important among these chemokines are RANTES (regulated on activation, normal T cell-expressed and -secreted) and macrophage inflammatory-protein alpha, MIP-1alpha, both of which show correlation with severe RSV bronchiolitis. It is not clear whether high levels of these chemokines are important in disease pathogenesis, and this study addresses this question by studying genetic variants of their major receptor, CC chemokine receptor 5. Results from both a case-control and family-based genetic-association analysis show that the -2459G and -2554T variants are associated with severe RSV bronchiolitis (P=.01). It is proposed that these CCR5 variants influence the inflammatory response, and these data provide further evidence of the important role that host genetic variability plays in the determination of disease severity in RSV bronchiolitis.

Collaboration


Dive into the Catrin E. Moore's collaboration.

Top Co-Authors

Avatar

Nicholas P. J. Day

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Parry

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge