Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole Stoesser is active.

Publication


Featured researches published by Nicole Stoesser.


Journal of Clinical Microbiology | 2010

Multilocus Sequence Typing of Clostridium difficile

David Griffiths; Warren N. Fawley; Melina Kachrimanidou; Rory Bowden; Derrick W. Crook; Rowena Fung; Tanya Golubchik; Rosalind M. Harding; Katie Jeffery; Keith A. Jolley; Richard Kirton; Tim Peto; Gareth Rees; Nicole Stoesser; Alison Vaughan; A. Sarah Walker; Bernadette C. Young; Mark H. Wilcox; Kate E. Dingle

ABSTRACT A robust high-throughput multilocus sequence typing (MLST) scheme for Clostridium difficile was developed and validated using a diverse collection of 50 reference isolates representing 45 different PCR ribotypes and 102 isolates from recent clinical samples. A total of 49 PCR ribotypes were represented overall. All isolates were typed by MLST and yielded 40 sequence types (STs). A web-accessible database was set up (http://pubmlst.org/cdifficile/ ) to facilitate the dissemination and comparison of C. difficile MLST genotyping data among laboratories. MLST and PCR ribotyping were similar in discriminatory abilities, having indices of discrimination of 0.90 and 0.92, respectively. Some STs corresponded to a single PCR ribotype (32/40), other STs corresponded to multiple PCR ribotypes (8/40), and, conversely, the PCR ribotype was not always predictive of the ST. The total number of variable nucleotide sites in the concatenated MLST sequences was 103/3,501 (2.9%). Concatenated MLST sequences were used to construct a neighbor-joining tree which identified four phylogenetic groups of STs and one outlier (ST-11; PCR ribotype 078). These groups apparently correlate with clades identified previously by comparative genomics. The MLST scheme was sufficiently robust to allow direct genotyping of C. difficile in total stool DNA extracts without isolate culture. The direct (nonculture) MLST approach may prove useful as a rapid genotyping method, potentially benefiting individual patients and informing hospital infection control.


Clinical Infectious Diseases | 2012

Fidaxomicin Versus Vancomycin for Clostridium difficile Infection: Meta-analysis of Pivotal Randomized Controlled Trials

Derrick W. Crook; A. Sarah Walker; Yin Kean; Karl Weiss; Oliver A. Cornely; Mark A. Miller; Roberto Esposito; Thomas J. Louie; Nicole Stoesser; Bernadette C. Young; Brian Angus; Sherwood L. Gorbach; Tim Peto

Two recently completed phase 3 trials (003 and 004) showed fidaxomicin to be noninferior to vancomycin for curing Clostridium difficile infection (CDI) and superior for reducing CDI recurrences. In both studies, adults with active CDI were randomized to receive blinded fidaxomicin 200 mg twice daily or vancomycin 125 mg 4 times a day for 10 days. Post hoc exploratory intent-to-treat (ITT) time-to-event analyses were undertaken on the combined study 003 and 004 data, using fixed-effects meta-analysis and Cox regression models. ITT analysis of the combined 003/004 data for 1164 patients showed that fidaxomicin reduced persistent diarrhea, recurrence, or death by 40% (95% confidence interval [CI], 26%–51%; P < .0001) compared with vancomycin through day 40. A 37% (95% CI, 2%–60%; P = .037) reduction in persistent diarrhea or death was evident through day 12 (heterogeneity P = .50 vs 13–40 days), driven by 7 (1.2%) fidaxomicin versus 17 (2.9%) vancomycin deaths at <12 days. Low albumin level, low eosinophil count, and CDI treatment preenrollment were risk factors for persistent diarrhea or death at 12 days, and CDI in the previous 3 months was a risk factor for recurrence (all P < .01). Fidaxomicin has the potential to substantially improve outcomes from CDI.


Journal of Antimicrobial Chemotherapy | 2013

Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data

Nicole Stoesser; Elizabeth M. Batty; David W. Eyre; Marcus Morgan; David H. Wyllie; C. Del Ojo Elias; James R. Johnson; A. S. Walker; Tim Peto; Derrick W. Crook

Objectives Whole-genome sequencing potentially represents a single, rapid and cost-effective approach to defining resistance mechanisms and predicting phenotype, and strain type, for both clinical and epidemiological purposes. This retrospective study aimed to determine the efficacy of whole genome-based antimicrobial resistance prediction in clinical isolates of Escherichia coli and Klebsiella pneumoniae. Methods Seventy-four E. coli and 69 K. pneumoniae bacteraemia isolates from Oxfordshire, UK, were sequenced (Illumina HiSeq 2000). Resistance phenotypes were predicted from genomic sequences using BLASTn-based comparisons of de novo-assembled contigs with a study database of >100 known resistance-associated loci, including plasmid-associated and chromosomal genes. Predictions were made for seven commonly used antimicrobials: amoxicillin, co-amoxiclav, ceftriaxone, ceftazidime, ciprofloxacin, gentamicin and meropenem. Comparisons were made with phenotypic results obtained in duplicate by broth dilution (BD Phoenix). Discrepancies, either between duplicate BD Phoenix results or between genotype and phenotype, were resolved with gradient diffusion analyses. Results A wide variety of antimicrobial resistance genes were identified, including blaCTX-M, blaLEN, blaOKP, blaOXA, blaSHV, blaTEM, aac(3′)-Ia, aac-(3′)-IId, aac-(3′)-IIe, aac(6′)-Ib-cr, aadA1a, aadA4, aadA5, aadA16, aph(6′)-Id, aph(3′)-Ia, qnrB and qnrS, as well as resistance-associated mutations in chromosomal gyrA and parC genes. The sensitivity of genome-based resistance prediction across all antibiotics for both species was 0.96 (95% CI: 0.94–0.98) and the specificity was 0.97 (95% CI: 0.95–0.98). Very major and major error rates were 1.2% and 2.1%, respectively. Conclusions Our method was as sensitive and specific as routinely deployed phenotypic methods. Validation against larger datasets and formal assessments of cost and turnaround time in a routine laboratory setting are warranted.


PLOS ONE | 2011

Clinical Clostridium difficile: Clonality and Pathogenicity Locus Diversity

Kate E. Dingle; David Griffiths; Xavier Didelot; Jessica Evans; Alison Vaughan; Melina Kachrimanidou; Nicole Stoesser; Keith A. Jolley; Tanya Golubchik; Rosalind M. Harding; Tim Peto; Warren N. Fawley; A. Sarah Walker; Mark H. Wilcox; Derrick W. Crook

Clostridium difficile infection (CDI) is an important cause of mortality and morbidity in healthcare settings. The major virulence determinants are large clostridial toxins, toxin A (tcdA) and toxin B (tcdB), encoded within the pathogenicity locus (PaLoc). Isolates vary in pathogenicity from hypervirulent PCR-ribotypes 027 and 078 with high mortality, to benign non-toxigenic strains carried asymptomatically. The relative pathogenicity of most toxigenic genotypes is still unclear, but may be influenced by PaLoc genetic variant. This is the largest study of C. difficile molecular epidemiology performed to date, in which a representative collection of recent isolates (n = 1290) from patients with CDI in Oxfordshire, UK, was genotyped by multilocus sequence typing. The population structure was described using NeighborNet and ClonalFrame. Sequence variation within toxin B (tcdB) and its negative regulator (tcdC), was mapped onto the population structure. The 69 Sequence Types (ST) showed evidence for homologous recombination with an effect on genetic diversification four times lower than mutation. Five previously recognised genetic groups or clades persisted, designated 1 to 5, each having a strikingly congruent association with tcdB and tcdC variants. Hypervirulent ST-11 (078) was the only member of clade 5, which was divergent from the other four clades within the MLST loci. However, it was closely related to the other clades within the tcdB and tcdC loci. ST-11 (078) may represent a divergent formerly non-toxigenic strain that acquired the PaLoc (at least) by genetic recombination. This study focused on human clinical isolates collected from a single geographic location, to achieve a uniquely high density of sampling. It sets a baseline of MLST data for future comparative studies investigating genotype virulence potential (using clinical severity data for these isolates), possible reservoirs of human CDI, and the evolutionary origins of hypervirulent strains.


Mbio | 2016

Evolutionary History of the Global Emergence of the Escherichia coli Epidemic Clone ST131

Nicole Stoesser; Anna E. Sheppard; Louise Pankhurst; Nicola De Maio; Catrin E. Moore; Robert Sebra; Paul Turner; Luke Anson; Andrew Kasarskis; Elizabeth M. Batty; Veronica N. Kos; Daniel J. Wilson; Rattanaphone Phetsouvanh; David H. Wyllie; Evgeni V. Sokurenko; Amee R. Manges; Timothy J. Johnson; Lance B. Price; Tim Peto; James R. Johnson; Xavier Didelot; A. Sarah Walker; Derrick W. Crook

ABSTRACT Escherichia coli sequence type 131 (ST131) has emerged globally as the most predominant extraintestinal pathogenic lineage within this clinically important species, and its association with fluoroquinolone and extended-spectrum cephalosporin resistance impacts significantly on treatment. The evolutionary histories of this lineage, and of important antimicrobial resistance elements within it, remain unclearly defined. This study of the largest worldwide collection (n = 215) of sequenced ST131 E. coli isolates to date demonstrates that the clonal expansion of two previously recognized antimicrobial-resistant clades, C1/H30R and C2/H30Rx, started around 25 years ago, consistent with the widespread introduction of fluoroquinolones and extended-spectrum cephalosporins in clinical medicine. These two clades appear to have emerged in the United States, with the expansion of the C2/H30Rx clade driven by the acquisition of a blaCTX-M-15-containing IncFII-like plasmid that has subsequently undergone extensive rearrangement. Several other evolutionary processes influencing the trajectory of this drug-resistant lineage are described, including sporadic acquisitions of CTX-M resistance plasmids and chromosomal integration of blaCTX-M within subclusters followed by vertical evolution. These processes are also occurring for another family of CTX-M gene variants more recently observed among ST131, the blaCTX-M-14/14-like group. The complexity of the evolutionary history of ST131 has important implications for antimicrobial resistance surveillance, epidemiological analysis, and control of emerging clinical lineages of E. coli. These data also highlight the global imperative to reduce specific antibiotic selection pressures and demonstrate the important and varied roles played by plasmids and other mobile genetic elements in the perpetuation of antimicrobial resistance within lineages. IMPORTANCE Escherichia coli, perennially a major bacterial pathogen, is becoming increasingly difficult to manage due to emerging resistance to all preferred antimicrobials. Resistance is concentrated within specific E. coli lineages, such as sequence type 131 (ST131). Clarification of the genetic basis for clonally associated resistance is key to devising intervention strategies. We used high-resolution genomic analysis of a large global collection of ST131 isolates to define the evolutionary history of extended-spectrum beta-lactamase production in ST131. We documented diverse contributory genetic processes, including stable chromosomal integrations of resistance genes, persistence and evolution of mobile resistance elements within sublineages, and sporadic acquisition of different resistance elements. Both global distribution and regional segregation were evident. The diversity of resistance element acquisition and propagation within ST131 indicates a need for control and surveillance strategies that target both bacterial strains and mobile genetic elements. Escherichia coli, perennially a major bacterial pathogen, is becoming increasingly difficult to manage due to emerging resistance to all preferred antimicrobials. Resistance is concentrated within specific E. coli lineages, such as sequence type 131 (ST131). Clarification of the genetic basis for clonally associated resistance is key to devising intervention strategies. We used high-resolution genomic analysis of a large global collection of ST131 isolates to define the evolutionary history of extended-spectrum beta-lactamase production in ST131. We documented diverse contributory genetic processes, including stable chromosomal integrations of resistance genes, persistence and evolution of mobile resistance elements within sublineages, and sporadic acquisition of different resistance elements. Both global distribution and regional segregation were evident. The diversity of resistance element acquisition and propagation within ST131 indicates a need for control and surveillance strategies that target both bacterial strains and mobile genetic elements.


Genome Biology and Evolution | 2014

Evolutionary History of the Clostridium difficile Pathogenicity Locus

Kate E. Dingle; Briony Elliott; E.R. Robinson; D.T. Griffiths; David W. Eyre; Nicole Stoesser; Alison Vaughan; Tanya Golubchik; Warren N. Fawley; Mark H. Wilcox; Tim Peto; A. S. Walker; Thomas V. Riley; Derrick W. Crook; Xavier Didelot

The symptoms of Clostridium difficile infection are caused by toxins expressed from its 19 kb pathogenicity locus (PaLoc). Stable integration of the PaLoc is suggested by its single chromosomal location and the clade specificity of its different genetic variants. However, the PaLoc is variably present, even among closely related strains, and thus resembles a mobile genetic element. Our aim was to explain these apparently conflicting observations by reconstructing the evolutionary history of the PaLoc. Phylogenetic analyses and annotation of the regions spanning the PaLoc were performed using C. difficile population-representative genomes chosen from a collection of 1,693 toxigenic (PaLoc present) and nontoxigenic (PaLoc absent) isolates. Comparison of the core genome and PaLoc phylogenies demonstrated an eventful evolutionary history, with distinct PaLoc variants acquired clade specifically after divergence. In particular, our data suggest a relatively recent PaLoc acquisition in clade 4. Exchanges and losses of the PaLoc DNA have also occurred, via long homologous recombination events involving flanking chromosomal sequences. The most recent loss event occurred ∼30 years ago within a clade 1 genotype. The genetic organization of the clade 3 PaLoc was unique in containing a stably integrated novel transposon (designated Tn6218), variants of which were found at multiple chromosomal locations. Tn6218 elements were Tn916-related but nonconjugative and occasionally contained genes conferring resistance to clinically relevant antibiotics. The evolutionary histories of two contrasting but clinically important genetic elements were thus characterized: the PaLoc, mobilized rarely via homologous recombination, and Tn6218, mobilized frequently through transposition.


Lancet Infectious Diseases | 2017

Effects of control interventions on Clostridium difficile infection in England: an observational study

Kate E. Dingle; Xavier Didelot; T Phuong Quan; David W. Eyre; Nicole Stoesser; Tanya Golubchik; Rosalind M. Harding; Daniel J. Wilson; David Griffiths; Alison Vaughan; John Finney; David H. Wyllie; Sarah Oakley; Warren N. Fawley; Jane Freeman; K. Morris; Jessica Martin; Philip Howard; Sherwood L. Gorbach; Ellie J. C. Goldstein; Diane M. Citron; Susan Hopkins; Russell Hope; Alan P. Johnson; Mark H. Wilcox; Tim Peto; A. Sarah Walker; Derrick W. Crook; Carlos del Ojo Elias; Charles Crichton

Summary Background The control of Clostridium difficile infections is an international clinical challenge. The incidence of C difficile in England declined by roughly 80% after 2006, following the implementation of national control policies; we tested two hypotheses to investigate their role in this decline. First, if C difficile infection declines in England were driven by reductions in use of particular antibiotics, then incidence of C difficile infections caused by resistant isolates should decline faster than that caused by susceptible isolates across multiple genotypes. Second, if C difficile infection declines were driven by improvements in hospital infection control, then transmitted (secondary) cases should decline regardless of susceptibility. Methods Regional (Oxfordshire and Leeds, UK) and national data for the incidence of C difficile infections and antimicrobial prescribing data (1998–2014) were combined with whole genome sequences from 4045 national and international C difficile isolates. Genotype (multilocus sequence type) and fluoroquinolone susceptibility were determined from whole genome sequences. The incidence of C difficile infections caused by fluoroquinolone-resistant and fluoroquinolone-susceptible isolates was estimated with negative-binomial regression, overall and per genotype. Selection and transmission were investigated with phylogenetic analyses. Findings National fluoroquinolone and cephalosporin prescribing correlated highly with incidence of C difficile infections (cross-correlations >0·88), by contrast with total antibiotic prescribing (cross-correlations <0·59). Regionally, C difficile decline was driven by elimination of fluoroquinolone-resistant isolates (approximately 67% of Oxfordshire infections in September, 2006, falling to approximately 3% in February, 2013; annual incidence rate ratio 0·52, 95% CI 0·48–0·56 vs fluoroquinolone-susceptible isolates: 1·02, 0·97–1·08). C difficile infections caused by fluoroquinolone-resistant isolates declined in four distinct genotypes (p<0·01). The regions of phylogenies containing fluoroquinolone-resistant isolates were short-branched and geographically structured, consistent with selection and rapid transmission. The importance of fluoroquinolone restriction over infection control was shown by significant declines in inferred secondary (transmitted) cases caused by fluoroquinolone-resistant isolates with or without hospital contact (p<0·0001) versus no change in either group of cases caused by fluoroquinolone-susceptible isolates (p>0·2). Interpretation Restricting fluoroquinolone prescribing appears to explain the decline in incidence of C difficile infections, above other measures, in Oxfordshire and Leeds, England. Antimicrobial stewardship should be a central component of C difficile infection control programmes. Funding UK Clinical Research Collaboration (Medical Research Council, Wellcome Trust, National Institute for Health Research); NIHR Oxford Biomedical Research Centre; NIHR Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance (Oxford University in partnership with Public Health England [PHE]), and on Modelling Methodology (Imperial College, London in partnership with PHE); and the Health Innovation Challenge Fund.


Antimicrobial Agents and Chemotherapy | 2014

Genome Sequencing of an Extended Series of NDM-Producing Klebsiella pneumoniae Isolates from Neonatal Infections in a Nepali Hospital Characterizes the Extent of Community- versus Hospital-Associated Transmission in an Endemic Setting

Nicole Stoesser; Adam Giess; Elizabeth M. Batty; Anna E. Sheppard; As Walker; Daniel J. Wilson; Xavier Didelot; Ali Bashir; Robert Sebra; A. Kasarskis; B. Sthapit; M. Shakya; Dominic F. Kelly; Andrew J. Pollard; Tim Peto; Derrick W. Crook; Peter Donnelly; Stephen Thorson; P. Amatya; S. Joshi

ABSTRACT NDM-producing Klebsiella pneumoniae strains represent major clinical and infection control challenges, particularly in resource-limited settings with high rates of antimicrobial resistance. Determining whether transmission occurs at a gene, plasmid, or bacterial strain level and within hospital and/or the community has implications for monitoring and controlling spread. Whole-genome sequencing (WGS) is the highest-resolution typing method available for transmission epidemiology. We sequenced carbapenem-resistant K. pneumoniae isolates from 26 individuals involved in several infection case clusters in a Nepali neonatal unit and 68 other clinical Gram-negative isolates from a similar time frame, using Illumina and PacBio technologies. Within-outbreak chromosomal and closed-plasmid structures were generated and used as data set-specific references. Three temporally separated case clusters were caused by a single NDM K. pneumoniae strain with a conserved set of four plasmids, one being a 304,526-bp plasmid carrying blaNDM-1. The plasmids contained a large number of antimicrobial/heavy metal resistance and plasmid maintenance genes, which may have explained their persistence. No obvious environmental/human reservoir was found. There was no evidence of transmission of outbreak plasmids to other Gram-negative clinical isolates, although blaNDM variants were present in other isolates in different genetic contexts. WGS can effectively define complex antimicrobial resistance epidemiology. Wider sampling frames are required to contextualize outbreaks. Infection control may be effective in terminating outbreaks caused by particular strains, even in areas with widespread resistance, although this study could not demonstrate evidence supporting specific interventions. Larger, detailed studies are needed to characterize resistance genes, vectors, and host strains involved in disease, to enable effective intervention.


Antimicrobial Agents and Chemotherapy | 2015

Klebsiella pneumoniae carbapenemase (KPC) producing K. pneumoniae at a Single Institution: Insights into Endemicity from Whole Genome Sequencing

Amy J. Mathers; Nicole Stoesser; Anna E. Sheppard; Louise Pankhurst; Adam Giess; Anthony J. Yeh; Xavier Didelot; Stephen D. Turner; Robert Sebra; Andrew Kasarskis; Tim Peto; Derrick W. Crook; Costi D. Sifri

ABSTRACT The global emergence of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) multilocus sequence type ST258 is widely recognized. Less is known about the molecular and epidemiological details of non-ST258 K. pneumoniae in the setting of an outbreak mediated by an endemic plasmid. We describe the interplay of blaKPC plasmids and K. pneumoniae strains and their relationship to the location of acquisition in a U.S. health care institution. Whole-genome sequencing (WGS) analysis was applied to KPC-Kp clinical isolates collected from a single institution over 5 years following the introduction of blaKPC in August 2007, as well as two plasmid transformants. KPC-Kp from 37 patients yielded 16 distinct sequence types (STs). Two novel conjugative blaKPC plasmids (pKPC_UVA01 and pKPC_UVA02), carried by the hospital index case, accounted for the presence of blaKPC in 21/37 (57%) subsequent cases. Thirteen (35%) isolates represented an emergent lineage, ST941, which contained pKPC_UVA01 in 5/13 (38%) and pKPC_UVA02 in 6/13 (46%) cases. Seven (19%) isolates were the epidemic KPC-Kp strain, ST258, mostly imported from elsewhere and not carrying pKPC_UVA01 or pKPC_UVA02. Using WGS-based analysis of clinical isolates and plasmid transformants, we demonstrate the unexpected dispersal of blaKPC to many non-ST258 lineages in a hospital through spread of at least two novel blaKPC plasmids. In contrast, ST258 KPC-Kp was imported into the institution on numerous occasions, with other blaKPC plasmid vectors and without sustained transmission. Instead, a newly recognized KPC-Kp strain, ST941, became associated with both novel blaKPC plasmids and spread locally, making it a future candidate for clinical persistence and dissemination.


Antimicrobial Agents and Chemotherapy | 2016

Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene blakpc

Anna E. Sheppard; Nicole Stoesser; Daniel J. Wilson; Robert Sebra; Andrew Kasarskis; Luke Anson; Adam Giess; Louise Pankhurst; Alison Vaughan; Christopher J. Grim; Heather L. Cox; Anthony J. Yeh; Costi D. Sifri; A. Sarah Walker; Tim Peto; Derrick W. Crook; Amy J. Mathers

ABSTRACT The recent widespread emergence of carbapenem resistance in Enterobacteriaceae is a major public health concern, as carbapenems are a therapy of last resort against this family of common bacterial pathogens. Resistance genes can mobilize via various mechanisms, including conjugation and transposition; however, the importance of this mobility in short-term evolution, such as within nosocomial outbreaks, is unknown. Using a combination of short- and long-read whole-genome sequencing of 281 blaKPC-positive Enterobacteriaceae isolates from a single hospital over 5 years, we demonstrate rapid dissemination of this carbapenem resistance gene to multiple species, strains, and plasmids. Mobility of blaKPC occurs at multiple nested genetic levels, with transmission of blaKPC strains between individuals, frequent transfer of blaKPC plasmids between strains/species, and frequent transposition of blaKPC transposon Tn4401 between plasmids. We also identify a common insertion site for Tn4401 within various Tn2-like elements, suggesting that homologous recombination between Tn2-like elements has enhanced the spread of Tn4401 between different plasmid vectors. Furthermore, while short-read sequencing has known limitations for plasmid assembly, various studies have attempted to overcome this by the use of reference-based methods. We also demonstrate that, as a consequence of the genetic mobility observed in this study, plasmid structures can be extremely dynamic, and therefore these reference-based methods, as well as traditional partial typing methods, can produce very misleading conclusions. Overall, our findings demonstrate that nonclonal resistance gene dissemination can be extremely rapid, presenting significant challenges for public health surveillance and achieving effective control of antibiotic resistance.

Collaboration


Dive into the Nicole Stoesser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Peto

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher M. Parry

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Amy J. Mathers

University of Virginia Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Sebra

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge