Cay M. Kielty
Wellcome Trust Centre for Cell-Matrix Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cay M. Kielty.
Journal of Medical Genetics | 2006
Peter N. Robinson; E. Arteaga-Solis; C. Baldock; Gwenaëlle Collod-Béroud; P. Booms; A. De Paepe; Hc Dietz; Gao Guo; Penny A. Handford; Daniel P. Judge; Cay M. Kielty; Bart Loeys; Dianna M. Milewicz; Andreas Ney; F. Ramirez; Dieter P. Reinhardt; Kerstin Tiedemann; P. Whiteman; Maurice Godfrey
Marfan syndrome (MFS), a relatively common autosomal dominant hereditary disorder of connective tissue with prominent manifestations in the skeletal, ocular, and cardiovascular systems, is caused by mutations in the gene for fibrillin-1 (FBN1). The leading cause of premature death in untreated individuals with MFS is acute aortic dissection, which often follows a period of progressive dilatation of the ascending aorta. Recent research on the molecular physiology of fibrillin and the pathophysiology of MFS and related disorders has changed our understanding of this disorder by demonstrating changes in growth factor signalling and in matrix-cell interactions. The purpose of this review is to provide a comprehensive overview of recent advances in the molecular biology of fibrillin and fibrillin-rich microfibrils. Mutations in FBN1 and other genes found in MFS and related disorders will be discussed, and novel concepts concerning the complex and multiple mechanisms of the pathogenesis of MFS will be explained.
Journal of Biological Chemistry | 2005
Sarah L. Dallas; Pitchumani Sivakumar; Carolyn Jones; Qian Chen; Donna M. Pesciotta Peters; Deane F. Mosher; Martin J. Humphries; Cay M. Kielty
Latent transforming growth factor-β-binding proteins (LTBPs) are extracellular matrix (ECM) glycoproteins that play a major role in the storage of latent TGFβ in the ECM and regulate its availability. Here we show that fibronectin is critical for the incorporation of LTBP1 and transforming growth factor-β (TGFβ) into the ECM of osteoblasts and fibroblasts. Immunolocalization studies suggested that fibronectin provides an initial scaffold that precedes and patterns LTBP1 deposition but that LTBP1 and fibronectin are later localized in separate fibrillar networks, suggesting that the initial template is lost. Treatment of fetal rat calvarial osteoblasts with a 70-kDa N-terminal fibronectin fragment that inhibits fibronectin assembly impaired incorporation of LTBP1 and TGFβ into the ECM. Consistent with this, LTBP1 failed to assemble in embryonic fibroblasts that lack the gene for fibronectin. LTBP1 assembly was rescued by full-length fibronectin and superfibronectin, which are capable of assembly into fibronectin fibrils, but not by other fibronectin fragments, including a 160-kDa RGD-containing fragment that activates α5β1 integrins. This suggests that the critical event for LTBP1 assembly is the formation of a fibronectin fibrillar network and that integrin ligation by fibronectin molecules alone is not sufficient. Not only was fibronectin essential for the initial incorporation of LTBP1 into the ECM, but the continued presence of fibronectin was required for the continued assembly of LTBP1. These studies highlight a nonredundant role for fibronectin in LTBP1 assembly into the ECM and suggest a novel role for fibronectin in regulation of TGFβ via LTBP1 interactions.
Journal of Cell Biology | 2007
Shazia S. Chaudhry; Stuart A. Cain; Amanda Morgan; Sarah L. Dallas; C. Adrian Shuttleworth; Cay M. Kielty
We have discovered that fibrillin-1, which forms extracellular microfibrils, can regulate the bioavailability of transforming growth factor (TGF) β1, a powerful cytokine that modulates cell survival and phenotype. Altered TGFβ signaling is a major contributor to the pathology of Marfan syndrome (MFS) and related diseases. In the presence of cell layer extracellular matrix, a fibrillin-1 sequence encoded by exons 44–49 releases endogenous TGFβ1, thereby stimulating TGFβ receptor–mediated Smad2 signaling. This altered TGFβ1 bioavailability does not require intact cells, proteolysis, or the altered expression of TGFβ1 or its receptors. Mass spectrometry revealed that a fibrillin-1 fragment containing the TGFβ1-releasing sequence specifically associates with full-length fibrillin-1 in cell layers. Solid-phase and BIAcore binding studies showed that this fragment interacts strongly and specifically with N-terminal fibrillin-1, thereby inhibiting the association of C-terminal latent TGFβ-binding protein 1 (a component of the large latent complex [LLC]) with N-terminal fibrillin-1. By releasing LLC from microfibrils, the fibrillin-1 sequence encoded by exons 44–49 can contribute to MFS and related diseases.
Journal of Biological Chemistry | 2003
Daniel V. Bax; Sarah E. Bernard; Amanda Lomas; Amanda Morgan; Jon Humphries; C. Adrian Shuttleworth; Martin J. Humphries; Cay M. Kielty
Fibrillins are the major glycoprotein components of microfibrils that form a template for tropoelastin during elastic fibrillogenesis. We have examined cell adhesion to assembled purified microfibrils, and its molecular basis. Human dermal fibroblasts exhibited Arg-Gly-Asp and cation-dependent adhesion to microfibrils and recombinant fibrillin-1 protein fragments. Strong integrin α5β1 interactions with fibrillin ligands were identified, but integrin αvβ3 also contributed to cell adhesion. Fluorescence-activated cell sorting analysis confirmed the presence of abundant α5β1 and some αvβ3 receptors on these cells. Adhesion to microfibrils and to Arg-Gly-Aspcontaining fibrillin-1 protein fragments induced signaling events that led to cell spreading, altered cytoskeletal organization, and enhanced extracellular fibrillin-1 deposition. Differences in cell shape when plated on fibrillin or fibronectin implied substrate-specific α5β1-mediated cellular responses. An Arg-Gly-Asp-independent cell adhesion sequence was also identified within fibrillin-1. Adhesion and spreading of smooth muscle cells on fibrillin ligands was enhanced by antibody-induced β1 integrin activation. A375-SM melanoma cells bound Arg-Gly-Asp-containing fibrillin-1 protein fragments mainly through αvβ3, whereas HT1080 cells used mainly α5β1. This study has shown that fibrillin microfibrils mediate cell adhesion, that α5β1 and αvβ3 are both important but cell-specific fibrillin-1 receptors, and that cellular interactions with fibrillin-1 influence cell behavior.
Journal of Cell Science | 2011
Jennifer Veevers-Lowe; Stephen G. Ball; Adrian Shuttleworth; Cay M. Kielty
Cell migration during vascular remodelling is regulated by crosstalk between growth factor receptors and integrin receptors, which together coordinate cytoskeletal and motogenic changes. Here, we report extracellular matrix (ECM)-directed crosstalk between platelet-derived growth factor receptor (PDGFR)-β and α5β1-integrin, which controls the migration of mesenchymal stem (stromal) cells (MSCs). Cell adhesion to fibronectin induced α5β1-integrin-dependent phosphorylation of PDGFR-β in the absence of growth factor stimulation. Phosphorylated PDGFR-β co-immunoprecipitated with α5-integrin and colocalised with α5β1-integrin in the transient tidemarks of focal adhesions. Adhesion to fibronectin also strongly potentiated PDGF-BB-induced PDGFR-β phosphorylation and focal adhesion kinase (FAK) activity, in an α5β1-integrin-dependent manner. PDGFR-β-induced phosphoinositide 3-kinase (PI3K) and Akt activity, actin reorganisation and cell migration were all regulated by fibronectin and α5β1-integrin. This synergistic relationship between α5β1-integrin and PDGFR-β is a fundamental determinant of cell migration. Thus, fibronectin-rich matrices can prime PDGFR-β to recruit mesenchymal cells at sites of vascular remodelling.
Journal of Molecular Biology | 2003
Michael J. Sherratt; Clair Baldock; J. Louise Haston; David F. Holmes; Carolyn J.P. Jones; C. Adrian Shuttleworth; T.J. Wess; Cay M. Kielty
Fibrillin-rich microfibrils have endowed tissues with elasticity throughout multicellular evolution. We have used molecular combing techniques to determine Youngs modulus for individual microfibrils and X-ray diffraction of zonular filaments of the eye to establish the linearity of microfibril periodic extension. Microfibril periodicity is not altered at physiological zonular tissue extensions and Youngs modulus is between 78 MPa and 96 MPa, which is two orders of magnitude stiffer than elastin. We conclude that elasticity in microfibril-containing tissues arises primarily from reversible alterations in supra-microfibrillar arrangements rather than from intrinsic elastic properties of individual microfibrils which, instead, act as reinforcing fibres in fibrous composite tissues.
Journal of Cellular and Molecular Medicine | 2007
Stephen G. Ball; C. Adrian Shuttleworth; Cay M. Kielty
• Introduction • The vascular endothelial growth factor/platelet‐derived growth factor super‐family of ligands and receptors ‐ Vascular endothelial growth factor ligands ‐ Platelet‐derived growth factor ligands ‐ Vascular endothelial growth factor receptors ‐ Platelet‐derived growth factor receptors • Role of platelet‐derived growth factor receptors in regulating the MSC fate ‐ MSCs utilize a novel vascular endothelial growth factor/platelet‐derived growth factor receptor signalling mechanism ‐ Regulation of vascular endothelial growth factor/platelet‐derived growth factor receptor signalling • MSCs and the vasculature ‐ Differentiation of MSCs towards endothelial cells ‐ Differentiation of MSCs towards vascular smooth muscle lineages ‐ MSCs during vascular injury ‐ Contribution of MSCs to vasculogenesis ‐ MSCs during ischaemic myocardial tissue regeneration ‐ Involvement of MSCs during tumour vasculogenesis • Summary
Journal of Cell Science | 2010
Teresa Massam-Wu; Maybo Chiu; Rawshan Choudhury; Shazia S. Chaudhry; Andrew K. Baldwin; Amanda McGovern; Clair Baldock; C. Adrian Shuttleworth; Cay M. Kielty
Control of the bioavailability of the growth factor TGFβ is essential for tissue formation and homeostasis, yet precisely how latent TGFβ is incorporated into the extracellular matrix is unknown. Here, we show that deposition of a large latent TGFβ complex (LLC), which contains latent TGFβ-binding protein 1 (LTBP-1), is directly dependent on the pericellular assembly of fibrillin microfibrils, which interact with fibronectin during higher-order fibrillogenesis. LTBP-1 formed pericellular arrays that colocalized with microfibrils, whereas fibrillin knockdown inhibited fibrillar LTBP-1 and/or LLC deposition. Blocking α5β1 integrin or supplementing cultures with heparin, which both inhibited microfibril assembly, disrupted LTBP-1 deposition and enhanced Smad2 phosphorylation. Full-length LTBP-1 bound only weakly to N-terminal pro-fibrillin-1, but this association was strongly enhanced by heparin. The microfibril-associated glycoprotein MAGP-1 (MFAP-2) inhibited LTBP-1 binding to fibrillin-1 and stimulated Smad2 phosphorylation. By contrast, fibulin-4, which interacted strongly with full-length LTBP-1, did not induce Smad2 phosphorylation. Thus, LTBP-1 and/or LLC deposition is dependent on pericellular microfibril assembly and is governed by complex interactions between LTBP-1, heparan sulfate, fibrillin-1 and microfibril-associated molecules. In this way, microfibrils control TGFβ bioavailability.
The International Journal of Biochemistry & Cell Biology | 1995
Cay M. Kielty; C. Adrian Shuttleworth
Fibrillin-containing microfibrils are a unique class of connective tissue macromolecules whose critical contribution to the establishment and maintenance of diverse extracellular matrices was underlined by the recent linkage of their principal structural component fibrillin to Marfan syndrome, a heritable disorder with pleiotrophic connective tissue manifestations. The complexity of the structure: function relationships of these macromolecules was highlighted by the recent elucidation of the primary structure of fibrillin and characterisation of fibrillin mutations in Marfan patients. This review examines current understanding of the expression and assembly of fibrillin and describes new approaches which are now being applied to elucidate the many outstanding structural, organisational and functional aspects of the fibrillin-containing microfibrils.
Journal of Biological Chemistry | 2005
Stuart A. Cain; Clair Baldock; John Gallagher; Amanda Morgan; Daniel V. Bax; Anthony S. Weiss; C. Adrian Shuttleworth; Cay M. Kielty
Fibrillin-1 assembly into microfibrils and elastic fiber formation involves interactions with glycosaminoglycans. We have used BIAcore technology to investigate fibrillin-1 interactions with heparin and with heparin saccharides that are analogous to S-domains of heparan sulfate. We have identified four high affinity heparin-binding sites on fibrillin-1, localized three of these sites, and defined their binding kinetics. Heparin binding to the fibrillin-1 N terminus has particularly rapid kinetics. Hyaluronan and chondroitin sulfate did not interact significantly with fibrillin-1. Heparin saccharides with more than 12 monosaccharide units bound strongly to all four fibrillin-1 sites. Heparin did not inhibit fibrillin-1 N- and C-terminal interactions or RGD-dependent cell attachment, but heparin and MAGP-1 competed for binding to the fibrillin-1 N terminus, and heparin and tropoelastin competed for binding to a central fibrillin-1 sequence. By regulating these key interactions, heparin can profoundly influence microfibril and elastic fiber assembly.