Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clair Baldock is active.

Publication


Featured researches published by Clair Baldock.


Journal of Cell Science | 2007

Collagens at a glance

Karl E. Kadler; Clair Baldock; Jordi Bella; Ray Boot-Handford

Collagens are a large family of triple helical proteins that are widespread throughout the body and are important for a broad range of functions, including tissue scaffolding, cell adhesion, cell migration, cancer, angiogenesis, tissue morphogenesis and tissue repair. Collagen is best known as the


Science | 1996

A mechanism of drug action revealed by structural studies of enoyl reductase.

Clair Baldock; John B. Rafferty; Svetlana E. Sedelnikova; Patrick J. Baker; Antoine R. Stuitje; Antoni R. Slabas; Timothy Robert Hawkes; David W. Rice

Enoyl reductase (ENR), an enzyme involved in fatty acid biosynthesis, is the target for antibacterial diazaborines and the front-line antituberculosis drug isoniazid. Analysis of the structures of complexes of Escherichia coli ENR with nicotinamide adenine dinucleotide and either thienodiazaborine or benzodiazaborine revealed the formation of a covalent bond between the 2′ hydroxyl of the nicotinamide ribose and a boron atom in the drugs to generate a tight, noncovalently bound bisubstrate analog. This analysis has implications for the structure-based design of inhibitors of ENR, and similarities to other oxidoreductases suggest that mimicking this molecular linkage may have generic applications in other areas of medicinal chemistry.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Corneal collagen fibril structure in three dimensions: Structural insights into fibril assembly, mechanical properties, and tissue organization

David F. Holmes; Christopher Gilpin; Clair Baldock; Ulrike Ziese; Abraham J. Koster; Karl E. Kadler

The ability of the cornea to transmit light while being mechanically resilient is directly attributable to the formation of an extracellular matrix containing orthogonal sheets of collagen fibrils. The detailed structure of the fibrils and how this structure underpins the mechanical properties and organization of the cornea is understood poorly. In this study, we used automated electron tomography to study the three-dimensional organization of molecules in corneal collagen fibrils. The reconstructions show that the collagen molecules in the 36-nm diameter collagen fibrils are organized into microfibrils (≈4-nm diameter) that are tilted by ≈15° to the fibril long axis in a right-handed helix. An unexpected finding was that the microfibrils exhibit a constant-tilt angle independent of radial position within the fibril. This feature suggests that microfibrils in concentric layers are not always parallel to each other and cannot retain the same neighbors between layers. Analysis of the lateral structure shows that the microfibrils exhibit regions of order and disorder within the 67-nm axial repeat of collagen fibrils. Furthermore, the microfibrils are ordered at three specific regions of the axial repeat of collagen fibrils that correspond to the N- and C-telopeptides and the d-band of the gap zone. The reconstructions also show macromolecules binding to the fibril surface at sites that correspond precisely to where the microfibrils are most orderly.


Journal of Molecular Biology | 2003

Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues.

Michael J. Sherratt; Clair Baldock; J. Louise Haston; David F. Holmes; Carolyn J.P. Jones; C. Adrian Shuttleworth; T.J. Wess; Cay M. Kielty

Fibrillin-rich microfibrils have endowed tissues with elasticity throughout multicellular evolution. We have used molecular combing techniques to determine Youngs modulus for individual microfibrils and X-ray diffraction of zonular filaments of the eye to establish the linearity of microfibril periodic extension. Microfibril periodicity is not altered at physiological zonular tissue extensions and Youngs modulus is between 78 MPa and 96 MPa, which is two orders of magnitude stiffer than elastin. We conclude that elasticity in microfibril-containing tissues arises primarily from reversible alterations in supra-microfibrillar arrangements rather than from intrinsic elastic properties of individual microfibrils which, instead, act as reinforcing fibres in fibrous composite tissues.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity

Clair Baldock; Andres F. Oberhauser; Liang Ma; Donna Lammie; Veronique Siegler; Suzanne M. Mithieux; Yidong Tu; John Y.H. Chow; Farhana Suleman; Marc Malfois; Sarah E. Rogers; Liang Guo; Thomas C. Irving; Timothy James Wess; Anthonoy S. Weiss

Elastin enables the reversible deformation of elastic tissues and can withstand decades of repetitive forces. Tropoelastin is the soluble precursor to elastin, the main elastic protein found in mammals. Little is known of the shape and mechanism of assembly of tropoelastin as its unique composition and propensity to self-associate has hampered structural studies. In this study, we solve the nanostructure of full-length and corresponding overlapping fragments of tropoelastin using small angle X-ray and neutron scattering, allowing us to identify discrete regions of the molecule. Tropoelastin is an asymmetric coil, with a protruding foot that encompasses the C-terminal cell interaction motif. We show that individual tropoelastin molecules are highly extensible yet elastic without hysteresis to perform as highly efficient molecular nanosprings. Our findings shed light on how biology uses this single protein to build durable elastic structures that allow for cell attachment to an appended foot. We present a unique model for head-to-tail assembly which allows for the propagation of the molecule’s asymmetric coil through a stacked spring design.


Journal of Cell Science | 2010

Assembly of fibrillin microfibrils governs extracellular deposition of latent TGFβ

Teresa Massam-Wu; Maybo Chiu; Rawshan Choudhury; Shazia S. Chaudhry; Andrew K. Baldwin; Amanda McGovern; Clair Baldock; C. Adrian Shuttleworth; Cay M. Kielty

Control of the bioavailability of the growth factor TGFβ is essential for tissue formation and homeostasis, yet precisely how latent TGFβ is incorporated into the extracellular matrix is unknown. Here, we show that deposition of a large latent TGFβ complex (LLC), which contains latent TGFβ-binding protein 1 (LTBP-1), is directly dependent on the pericellular assembly of fibrillin microfibrils, which interact with fibronectin during higher-order fibrillogenesis. LTBP-1 formed pericellular arrays that colocalized with microfibrils, whereas fibrillin knockdown inhibited fibrillar LTBP-1 and/or LLC deposition. Blocking α5β1 integrin or supplementing cultures with heparin, which both inhibited microfibril assembly, disrupted LTBP-1 deposition and enhanced Smad2 phosphorylation. Full-length LTBP-1 bound only weakly to N-terminal pro-fibrillin-1, but this association was strongly enhanced by heparin. The microfibril-associated glycoprotein MAGP-1 (MFAP-2) inhibited LTBP-1 binding to fibrillin-1 and stimulated Smad2 phosphorylation. By contrast, fibulin-4, which interacted strongly with full-length LTBP-1, did not induce Smad2 phosphorylation. Thus, LTBP-1 and/or LLC deposition is dependent on pericellular microfibril assembly and is governed by complex interactions between LTBP-1, heparan sulfate, fibrillin-1 and microfibril-associated molecules. In this way, microfibrils control TGFβ bioavailability.


Structure | 1995

Common themes in redox chemistry emerge from the X-ray structure of oilseed rape (Brassica napus) enoyl acyl carrier protein reductase.

John B. Rafferty; J.William Simon; Clair Baldock; Peter J. Artymiuk; Patrick J. Baker; Antoine R. Stuitje; Antoni R. Slabas; David W. Rice

BACKGROUND Enoyl acyl carrier protein reductase (ENR) catalyzes the NAD(P)H-dependent reduction of trans-delta 2-enoyl acyl carrier protein, an essential step in de novo fatty acid biosynthesis. Plants contain both NADH-dependent and separate NADPH-dependent ENR enzymes which form part of the dissociable type II fatty acid synthetase. Highly elevated levels of the NADH-dependent enzyme are found during lipid deposition in maturing seeds of oilseed rape (Brassica napus). RESULTS The crystal structure of an ENR-NAD binary complex has been determined at 1.9 A resolution and consists of a homotetramer in which each subunit forms a single domain comprising a seven-stranded parallel beta sheet flanked by seven alpha helices. The subunit has a topology highly reminiscent of a dinucleotide-binding fold. The active site has been located by difference Fourier analysis of data from crystals equilibrated in NADH. CONCLUSIONS The structure of ENR shows a striking similarity with the epimerases and short-chain alcohol dehydrogenases, in particular, 3 alpha,20 beta-hydroxysteroid dehydrogenase (HSD). The similarity with HSD extends to the conservation of a catalytically important lysine that stabilizes the transition state and to the use of a tyrosine as a base--with subtle modifications arising from differing requirements of the reduction chemistry.


Journal of Biological Chemistry | 2005

Fibrillin-1 interactions with heparin. Implications for microfibril and elastic fiber assembly.

Stuart A. Cain; Clair Baldock; John Gallagher; Amanda Morgan; Daniel V. Bax; Anthony S. Weiss; C. Adrian Shuttleworth; Cay M. Kielty

Fibrillin-1 assembly into microfibrils and elastic fiber formation involves interactions with glycosaminoglycans. We have used BIAcore technology to investigate fibrillin-1 interactions with heparin and with heparin saccharides that are analogous to S-domains of heparan sulfate. We have identified four high affinity heparin-binding sites on fibrillin-1, localized three of these sites, and defined their binding kinetics. Heparin binding to the fibrillin-1 N terminus has particularly rapid kinetics. Hyaluronan and chondroitin sulfate did not interact significantly with fibrillin-1. Heparin saccharides with more than 12 monosaccharide units bound strongly to all four fibrillin-1 sites. Heparin did not inhibit fibrillin-1 N- and C-terminal interactions or RGD-dependent cell attachment, but heparin and MAGP-1 competed for binding to the fibrillin-1 N terminus, and heparin and tropoelastin competed for binding to a central fibrillin-1 sequence. By regulating these key interactions, heparin can profoundly influence microfibril and elastic fiber assembly.


Journal of Biological Chemistry | 2010

The Angiogenic Inhibitor Long Pentraxin PTX3 Forms an Asymmetric Octamer with Two Binding Sites for FGF2

Antonio Inforzato; Clair Baldock; Thomas A. Jowitt; David F. Holmes; Ragnar Lindstedt; Marcella Marcellini; Vincenzo Rivieccio; David C. Briggs; Karl E. Kadler; Antonio Verdoliva; Barbara Bottazzi; Alberto Mantovani; Giovanni Salvatori; Anthony J. Day

The inflammation-associated long pentraxin PTX3 plays key roles in innate immunity, female fertility, and vascular biology (e.g. it inhibits FGF2 (fibroblast growth factor 2)-mediated angiogenesis). PTX3 is composed of multiple protomers, each composed of distinct N- and C-terminal domains; however, it is not known how these are organized or contribute to its functional properties. Here, biophysical analyses reveal that PTX3 is composed of eight identical protomers, associated through disulfide bonds, forming an elongated and asymmetric, molecule with two differently sized domains interconnected by a stalk. The N-terminal region of the protomer provides the main structural determinant underlying this quaternary organization, supporting formation of a disulfide-linked tetramer and a dimer of dimers (a non-covalent tetramer), giving rise to the asymmetry of the molecule. Furthermore, the PTX3 octamer is shown to contain two FGF2 binding sites, where it is the tetramers that act as the functional units in ligand recognition. Thus, these studies provide a unifying model of the PTX3 oligomer, explaining both its quaternary organization and how this is required for its antiangiogenic function.


Journal of Biological Chemistry | 2009

Differential Regulation of Elastic Fiber Formation by Fibulin-4 and -5

Rawshan Choudhury; Amanda McGovern; Caroline Ridley; Stuart A. Cain; Andrew K. Baldwin; Ming Chuan Wang; Chun Guo; Aleksandr Mironov; Zoe Drymoussi; Dorothy Trump; Adrian Shuttleworth; Clair Baldock; Cay M. Kielty

Fibulin-4 and -5 are extracellular glycoproteins with essential non-compensatory roles in elastic fiber assembly. We have determined how they interact with tropoelastin, lysyl oxidase, and fibrillin-1, thereby revealing how they differentially regulate assembly. Strong binding between fibulin-4 and lysyl oxidase enhanced the interaction of fibulin-4 with tropoelastin, forming ternary complexes that may direct elastin cross-linking. In contrast, fibulin-5 did not bind lysyl oxidase strongly but bound tropoelastin in terminal and central regions and could concurrently bind fibulin-4. Both fibulins differentially bound N-terminal fibrillin-1, which strongly inhibited their binding to lysyl oxidase and tropoelastin. Knockdown experiments revealed that fibulin-5 controlled elastin deposition on microfibrils, although fibulin-4 can also bind fibrillin-1. These experiments provide a molecular account of the distinct roles of fibulin-4 and -5 in elastic fiber assembly and how they act in concert to chaperone cross-linked elastin onto microfibrils.

Collaboration


Dive into the Clair Baldock's collaboration.

Top Co-Authors

Avatar

Cay M. Kielty

Wellcome Trust Centre for Cell-Matrix Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart A. Cain

Wellcome Trust Centre for Cell-Matrix Research

View shared research outputs
Top Co-Authors

Avatar

C. Adrian Shuttleworth

Wellcome Trust Centre for Cell-Matrix Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge