Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cécile Béguin is active.

Publication


Featured researches published by Cécile Béguin.


Pharmacology & Therapeutics | 2009

Kappa-opioid ligands in the study and treatment of mood disorders

William A. Carlezon; Cécile Béguin; Allison T. Knoll; Bruce M. Cohen

The biological basis of mood is not understood. Most research on mood and affective states has focused on the roles of brain systems containing monoamines (e.g., dopamine, norepinephrine, serotonin). However, it is becoming clear that endogenous opioid systems in the brain may also be involved in the regulation of mood. In this review, we focus on the potential utility of kappa-opioid receptor (KOR) ligands in the study and treatment of psychiatric disorders. Research from our group and others suggests that KOR antagonists might be useful for depression, KOR agonists might be useful for mania, and KOR partial agonists might be useful for mood stabilization. Currently available KOR agents have some unfavorable properties that might be addressed through medicinal chemistry. The development of KOR-selective agents with improved drug-like characteristics would facilitate preclinical and clinical studies designed to evaluate the possibility that KORs are a feasible target for new medications.


PLOS ONE | 2013

Selective κ Opioid Antagonists nor-BNI, GNTI and JDTic Have Low Affinities for Non-Opioid Receptors and Transporters

Thomas A. Munro; Xi-Ping Huang; Carmela Inglese; Maria Grazia Perrone; Ashlee Van’t Veer; F. Ivy Carroll; Cécile Béguin; William A. Carlezon; Nicola Antonio Colabufo; Bruce M. Cohen; Bryan L. Roth

Background Nor-BNI, GNTI and JDTic induce selective κ opioid antagonism that is delayed and extremely prolonged, but some other effects are of rapid onset and brief duration. The transient effects of these compounds differ, suggesting that some of them may be mediated by other targets. Results In binding assays, the three antagonists showed no detectable affinity (K i≥10 µM) for most non-opioid receptors and transporters (26 of 43 tested). There was no non-opioid target for which all three compounds shared detectable affinity, or for which any two shared sub-micromolar affinity. All three compounds showed low nanomolar affinity for κ opioid receptors, with moderate selectivity over μ and δ (3 to 44-fold). Nor-BNI bound weakly to the α2C-adrenoceptor (K i = 630 nM). GNTI enhanced calcium mobilization by noradrenaline at the α1A-adrenoceptor (EC50 = 41 nM), but did not activate the receptor, displace radioligands, or enhance PI hydrolysis. This suggests that it is a functionally-selective allosteric enhancer. GNTI was also a weak M1 receptor antagonist (K B = 3.7 µM). JDTic bound to the noradrenaline transporter (K i = 54 nM), but only weakly inhibited transport (IC50 = 1.1 µM). JDTic also bound to the opioid-like receptor NOP (K i = 12 nM), but gave little antagonism even at 30 µM. All three compounds exhibited rapid permeation and active efflux across Caco-2 cell monolayers. Conclusions Across 43 non-opioid CNS targets, only GNTI exhibited a potent functional effect (allosteric enhancement of α1A-adrenoceptors). This may contribute to GNTIs severe transient effects. Plasma concentrations of nor-BNI and GNTI may be high enough to affect some peripheral non-opioid targets. Nonetheless, κ opioid antagonism persists for weeks or months after these transient effects dissipate. With an adequate pre-administration interval, our results therefore strengthen the evidence that nor-BNI, GNTI and JDTic are highly selective κ opioid antagonists.


Bioorganic & Medicinal Chemistry Letters | 2005

Synthesis and in vitro pharmacological studies of new C(2) modified salvinorin A analogues.

David Y.-W. Lee; Vishnu Vardhan R. Karnati; Minsheng He; Lee-Yuan Liu-Chen; Leelakrishna Kondaveti; Zhongze Ma; Yulin Wang; Yong Chen; Cécile Béguin; William A. Carlezon; Bruce M. Cohen

Salvinorin A is the most potent naturally occurring opioid agonist yet discovered with high selectivity and affinity for kappa-opioid receptor. To explore its structure and activity relationships, a series of salvinorin A derivatives modified at the C2 position were prepared and studied. These salvinorin A derivatives were screened for binding and functional activities at the human kappa-opioid receptor. Compound 4, containing a methoxymethyl group at the 2-position, was a full kappa-agonist with an EC50 value at 0.6 nM, which is about 7 times more potent than salvinorin A.


BMC Pharmacology | 2012

Long-acting κ opioid antagonists nor-BNI, GNTI and JDTic: pharmacokinetics in mice and lipophilicity

Thomas A. Munro; Loren Berry; Ashlee Van’t Veer; Cécile Béguin; F. Ivy Carroll; Zhiyang Zhao; William A. Carlezon; Bruce M. Cohen

BackgroundNor-BNI, GNTI and JDTic induce κ opioid antagonism that is delayed by hours and can persist for months. Other effects are transient. It has been proposed that these drugs may be slowly absorbed or distributed, and may dissolve in cell membranes, thus slowing elimination and prolonging their effects. Recent evidence suggests, instead, that they induce prolonged desensitization of the κ opioid receptor.MethodsTo evaluate these hypotheses, we measured relevant physicochemical properties of nor-BNI, GNTI and JDTic, and the timecourse of brain and plasma concentrations in mice after intraperitoneal administration (using LC-MS-MS).ResultsIn each case, plasma levels were maximal within 30 min and declined by >80% within four hours, correlating well with previously reported transient effects. A strong negative correlation was observed between plasma levels and the delayed, prolonged timecourse of κ antagonism. Brain levels of nor-BNI and JDTic peaked within 30 min, but while nor-BNI was largely eliminated within hours, JDTic declined gradually over a week. Brain uptake of GNTI was too low to measure accurately, and higher doses proved lethal. None of the drugs were highly lipophilic, showing high water solubility (> 45 mM) and low distribution into octanol (log D7.4 < 2). Brain homogenate binding was within the range of many shorter-acting drugs (>7% unbound). JDTic showed P-gp-mediated efflux; nor- BNI and GNTI did not, but their low unbound brain uptake suggests efflux by another mechanism.ConclusionsThe negative plasma concentration-effect relationship we observed is difficult to reconcile with simple competitive antagonism, but is consistent with desensitization. The very slow elimination of JDTic from brain is surprising given that it undergoes active efflux, has modest affinity for homogenate, and has a shorter duration of action than nor-BNI under these conditions. We propose that this persistence may result from entrapment in cellular compartments such as lysosomes.


Journal of Pharmacology and Experimental Therapeutics | 2007

N-Methylacetamide Analog of Salvinorin A: A Highly Potent and Selective κ-Opioid Receptor Agonist with Oral Efficacy

Cécile Béguin; David N. Potter; Jennifer A. DiNieri; Thomas A. Munro; Michele R. Richards; Tracie A. Paine; Loren Berry; Zhiyang Zhao; Bryan L. Roth; Wei Xu; Lee Yuan Liu-Chen; William A. Carlezon; Bruce M. Cohen

Several preclinical studies indicate that selective κ-opioid receptor (KOR) antagonists have antidepressant-like effects, whereas KOR agonists have opposite effects, suggesting that each might be useful in the treatment of mood abnormalities. Salvinorin A (salvA) is a valuable KOR agonist for further study due to its high potency and receptor selectivity. However, it has short lasting effects in vivo and limited oral bioavailability, probably due to acetate metabolism. We compared the in vitro receptor binding selectivity of salvA and four analogs containing an ethyl ether (EE), isopropylamine (IPA), N-methylacetamide (NMA), or N-methylpropionamide (NMP) at C-2. All compounds showed high binding affinity for the KOR (Ki = 0.11–6.3 nM), although only salvA, EE, and NMA exhibited KOR selectivity. In a liver microsomal assay, salvA was least stable, whereas NMA and IPA displayed slower metabolic transformations. Intraperitoneal (i.p.) administration of salvA, NMA, and NMP dose-dependently elevated brain reward thresholds in the intracranial self-administration (ICSS) test, consistent with prodepressive-like KOR agonist effects. NMA and NMP were equipotent to salvA but displayed longer lasting effects (6- and 10-fold, respectively). A dose of salvA with prominent effects in the ICSS test after i.p. administration (2.0 mg/kg) was inactive after oral administration, whereas the same oral dose of NMA elevated ICSS thresholds. These studies suggest that, although salvA and NMA are similar in potency and selectivity as KOR agonists in vitro, NMA has improved stability and longer lasting actions that might make it more useful for studies of KOR agonist effects in animals and humans.


Bioorganic & Medicinal Chemistry | 2009

Modification of the furan ring of salvinorin A: Identification of a selective partial agonist at the kappa opioid receptor

Cécile Béguin; Katharine K. Duncan; Thomas A. Munro; Douglas M. Ho; Wei Xu; Lee-Yuan Liu-Chen; William A. Carlezon; Bruce M. Cohen

In an effort to find novel agents which selectively target the kappa opioid receptor (KOPR), we modified the furan ring of the highly potent and selective KOPR agonist salvinorin A. Introduction of small substituents at C-16 was well tolerated. 12-epi-Salvinorin A, synthesized in four steps from salvinorin A, was a selective partial agonist at the KOPR. No clear SAR patterns were observed for C-13 aryl ketones. Introducing a hydroxymethylene group between C-12 and the furan ring was tolerated. Small C-13 esters and ethers gave weak KOPR agonists, while all C-13 amides were inactive. Finally, substitution of oxadiazoles for the furan ring abolished affinity for the KOPR. None of the compounds displayed any KOPR antagonism or any affinity for mu or delta opioid receptors.


Neuropharmacology | 2009

Salvinorin A and derivatives: protection from metabolism does not prolong short-term, whole-brain residence.

Jacob M. Hooker; Thomas A. Munro; Cécile Béguin; David Alexoff; Colleen Shea; Youwen Xu; Bruce M. Cohen

Salvinorin A (SA) is a potent kappa opioid agonist with a brief duration of action. Consistent with this, our previous positron emission tomography (PET) studies of carbon-11 labeled SA showed that brain levels decrease rapidly after intravenous administration. SA is rapidly metabolized, giving the much less potent salvinorin B (SB), which is presumed to be responsible in part for SAs brief duration of action. To test this, we labeled the metabolically stable methyl ester of SA and SB with carbon-11 and compared their pharmacokinetics by PET imaging after intravenous administration to baboons. Labeling of salvinorin B ethoxymethyl ether (EOM-SB), a derivative with greater potency and resistance to metabolism, provided an additional test of the role of metabolism in brain efflux. Plasma analysis confirmed that SB and EOM-SB exhibited greater metabolic stability than SA. However, the three compounds exhibited very similar pharmacokinetics in brain, entering and exiting rapidly. This suggests that metabolism is not solely responsible for the brief brain residence time of SA. We determined that whole-brain concentrations of EOM-SB declined more slowly than SA after intraperitoneal administration in rodents. This is likely due to a combination in EOM-SBs increased metabolic stability and its decreased plasma protein affinity. Our results suggest that protecting salvinorin A derivatives from metabolism will prolong duration of action, but only when administered by routes giving slow absorption.


Bioorganic & Medicinal Chemistry Letters | 2012

Differential signaling properties at the kappa opioid receptor of 12-epi-salvinorin A and its analogues.

Cécile Béguin; Justin S. Potuzak; Wei Xu; Lee-Yuan Liu-Chen; John M. Streicher; Chad E. Groer; Laura M. Bohn; William A. Carlezon; Bruce M. Cohen

The kappa opioid receptor (KOPR) has been identified as a potential drug target to prevent or alter the course of mood, anxiety and addictive disorders or reduce response to stress. In a search for highly potent and selective KOPR partial agonists as pharmacological tools, we have modified 12-epi-salvinorin A, a compound which we have previously observed to be a KOPR partial agonist. Five analogues of 12-epi-salvinorin A were synthesized and their effects on G protein activation as well as β-arrestin2 recruitment were evaluated. Only 12-epi-salvinorin A (1) partially activated signaling through G proteins, yet acted as a full agonist in the β-arrestin 2 DiscoveRx assay. Other salvinorin analogues tested in these functional assays were full agonists in both assays of KOPR activation. By comparison, the non-selective opioid ligand nalbuphine, known to be a partial agonist for G-protein activation, was also a partial agonist for the β-arrestin mediated signaling pathway activated through KOPR.


Archive | 2009

Medicinal Chemistry of Kappa Opioid Receptor Antagonists

Cécile Béguin; Bruce M. Cohen

The kappa opioid receptor (KOR), a member of the opioid receptor family, was initially studied for its involvement in the mediation of pain. More recently, there has been growing interest in selective KOR agents for their potential effects on mood and reward. In particular, selective KOR antagonists may offer a novel approach to relieve symptoms of depression. In this chapter, we describe the structure–activity relationships (SAR) of nonpeptidic KOR antagonists. Specifically, we review the SAR of norbinaltorphimine (norBNI) and its structur ally simplified derivative GNTI. We present the SAR of JDTic and the recently developed MTHQ. The SAR patterns of norBNI have been extensively studied, but there have been relatively fewer studies on the SAR of JDTic and MTHQ. While the overall SAR trends of these structurally distinct agents differ, there appears to be a common requirement for KOR inhibition: the presence of a phenol unit and a basic nitrogen. In the second part of this chapter, we discuss the unusually long duration of action of the available KOR antagonists and make suggestions on pos sibilities for the design of additional KOR antagonists.


Brain Research | 2012

Effects of the anticonvulsant lacosamide compared to valproate and lamotrigine on cocaine-enhanced reward in rats

Cécile Béguin; David N. Potter; William A. Carlezon; Thomas Stöhr; Bruce M. Cohen

Some drugs developed as anticonvulsants (notably, valproate and lamotrigine) have therapeutic effects in bipolar and related disorders. Lacosamide, a recently approved anticonvulsant, has unique effects on sodium channels that may play a role in producing the mood-stabilizing effects of anticonvulsant drugs. We tested whether lacosamide would have effects similar to or different from valproate and lamotrigine in a model of reward and elevated mood. The intracranial self-stimulation (ICSS) test is sensitive to the function of brain reward systems. Changes in ICSS may model aspects of disorders characterized by abnormalities of reward and motivation. Cocaine elevates mood, and reduction of cocaine-induced facilitation of ICSS has been used to predict antimanic-like or mood stabilizing effects of drugs. We tested lacosamide, lamotrigine, and valproate in the rat ICSS test alone or in the presence of cocaine. A high dose of lacosamide (30 mg/kg) significantly elevated ICSS thresholds, indicating that it reduced the rewarding impact of medial forebrain bundle stimulation. Lower doses (3-10 mg/kg) did not alter ICSS, but blocked the cocaine-induced lowering of ICSS thresholds. The highest doses of valproate (300 mg/kg) and lamotrigine (30 mg/kg) also elevated ICSS thresholds, and only these high doses significantly lowered cocaine-induced effects. Of the drugs tested, only lacosamide significantly attenuated the reward-facilitating effects of cocaine at doses that had no effects on ICSS response in the absence of cocaine. Abnormalities of mood and reward are common in psychiatric disorders, and these results suggest that lacosamide deserves further study in models of these disorders.

Collaboration


Dive into the Cécile Béguin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan L. Roth

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge