Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas A. Munro is active.

Publication


Featured researches published by Thomas A. Munro.


PLOS ONE | 2013

Selective κ Opioid Antagonists nor-BNI, GNTI and JDTic Have Low Affinities for Non-Opioid Receptors and Transporters

Thomas A. Munro; Xi-Ping Huang; Carmela Inglese; Maria Grazia Perrone; Ashlee Van’t Veer; F. Ivy Carroll; Cécile Béguin; William A. Carlezon; Nicola Antonio Colabufo; Bruce M. Cohen; Bryan L. Roth

Background Nor-BNI, GNTI and JDTic induce selective κ opioid antagonism that is delayed and extremely prolonged, but some other effects are of rapid onset and brief duration. The transient effects of these compounds differ, suggesting that some of them may be mediated by other targets. Results In binding assays, the three antagonists showed no detectable affinity (K i≥10 µM) for most non-opioid receptors and transporters (26 of 43 tested). There was no non-opioid target for which all three compounds shared detectable affinity, or for which any two shared sub-micromolar affinity. All three compounds showed low nanomolar affinity for κ opioid receptors, with moderate selectivity over μ and δ (3 to 44-fold). Nor-BNI bound weakly to the α2C-adrenoceptor (K i = 630 nM). GNTI enhanced calcium mobilization by noradrenaline at the α1A-adrenoceptor (EC50 = 41 nM), but did not activate the receptor, displace radioligands, or enhance PI hydrolysis. This suggests that it is a functionally-selective allosteric enhancer. GNTI was also a weak M1 receptor antagonist (K B = 3.7 µM). JDTic bound to the noradrenaline transporter (K i = 54 nM), but only weakly inhibited transport (IC50 = 1.1 µM). JDTic also bound to the opioid-like receptor NOP (K i = 12 nM), but gave little antagonism even at 30 µM. All three compounds exhibited rapid permeation and active efflux across Caco-2 cell monolayers. Conclusions Across 43 non-opioid CNS targets, only GNTI exhibited a potent functional effect (allosteric enhancement of α1A-adrenoceptors). This may contribute to GNTIs severe transient effects. Plasma concentrations of nor-BNI and GNTI may be high enough to affect some peripheral non-opioid targets. Nonetheless, κ opioid antagonism persists for weeks or months after these transient effects dissipate. With an adequate pre-administration interval, our results therefore strengthen the evidence that nor-BNI, GNTI and JDTic are highly selective κ opioid antagonists.


Journal of Biological Chemistry | 2013

Functional Selectivity of 6′-Guanidinonaltrindole (6′-GNTI) at κ-Opioid Receptors in Striatal Neurons

Cullen L. Schmid; John M. Streicher; Chad E. Groer; Thomas A. Munro; Lei Zhou; Laura M. Bohn

Background: 6′-Guanidinonaltrindole (6′-GNTI) activates G protein coupling to κ-opioid receptors (KOR) without β-arrestin2 recruitment in transfected cells. Results: In striatal neurons, 6′-GNTI activates Akt but not ERK1/2; U69,593 activates both kinases. Conclusion: In neurons, U69,593-induced activation of ERK1/2 is β-arrestin2-dependent, whereas activation of Akt is G protein-mediated. Significance: Identification of KOR signaling pathways in endogenous systems will inform the development of KOR-directed medications. There is considerable evidence to suggest that drug actions at the κ-opioid receptor (KOR) may represent a means to control pain perception and modulate reward thresholds. As a G protein-coupled receptor (GPCR), the activation of KOR promotes Gαi/o protein coupling and the recruitment of β-arrestins. It has become increasingly evident that GPCRs can transduce signals that originate independently via G protein pathways and β-arrestin pathways; the ligand-dependent bifurcation of such signaling is referred to as “functional selectivity” or “signaling bias.” Recently, a KOR agonist, 6′-guanidinonaltrindole (6′-GNTI), was shown to display bias toward the activation of G protein-mediated signaling over β-arrestin2 recruitment. Therefore, we investigated whether such ligand bias was preserved in striatal neurons. Although the reference KOR agonist U69,593 induces the phosphorylation of ERK1/2 and Akt, 6′-GNTI only activates the Akt pathway in striatal neurons. Using pharmacological tools and β-arrestin2 knock-out mice, we show that KOR-mediated ERK1/2 phosphorylation in striatal neurons requires β-arrestin2, whereas Akt activation depends upon G protein signaling. These findings reveal a point of KOR signal bifurcation that can be observed in an endogenous neuronal setting and may prove to be an important indicator when developing biased agonists at the KOR.


BMC Pharmacology | 2012

Long-acting κ opioid antagonists nor-BNI, GNTI and JDTic: pharmacokinetics in mice and lipophilicity

Thomas A. Munro; Loren Berry; Ashlee Van’t Veer; Cécile Béguin; F. Ivy Carroll; Zhiyang Zhao; William A. Carlezon; Bruce M. Cohen

BackgroundNor-BNI, GNTI and JDTic induce κ opioid antagonism that is delayed by hours and can persist for months. Other effects are transient. It has been proposed that these drugs may be slowly absorbed or distributed, and may dissolve in cell membranes, thus slowing elimination and prolonging their effects. Recent evidence suggests, instead, that they induce prolonged desensitization of the κ opioid receptor.MethodsTo evaluate these hypotheses, we measured relevant physicochemical properties of nor-BNI, GNTI and JDTic, and the timecourse of brain and plasma concentrations in mice after intraperitoneal administration (using LC-MS-MS).ResultsIn each case, plasma levels were maximal within 30 min and declined by >80% within four hours, correlating well with previously reported transient effects. A strong negative correlation was observed between plasma levels and the delayed, prolonged timecourse of κ antagonism. Brain levels of nor-BNI and JDTic peaked within 30 min, but while nor-BNI was largely eliminated within hours, JDTic declined gradually over a week. Brain uptake of GNTI was too low to measure accurately, and higher doses proved lethal. None of the drugs were highly lipophilic, showing high water solubility (> 45 mM) and low distribution into octanol (log D7.4 < 2). Brain homogenate binding was within the range of many shorter-acting drugs (>7% unbound). JDTic showed P-gp-mediated efflux; nor- BNI and GNTI did not, but their low unbound brain uptake suggests efflux by another mechanism.ConclusionsThe negative plasma concentration-effect relationship we observed is difficult to reconcile with simple competitive antagonism, but is consistent with desensitization. The very slow elimination of JDTic from brain is surprising given that it undergoes active efflux, has modest affinity for homogenate, and has a shorter duration of action than nor-BNI under these conditions. We propose that this persistence may result from entrapment in cellular compartments such as lysosomes.


Journal of Pharmacology and Experimental Therapeutics | 2007

N-Methylacetamide Analog of Salvinorin A: A Highly Potent and Selective κ-Opioid Receptor Agonist with Oral Efficacy

Cécile Béguin; David N. Potter; Jennifer A. DiNieri; Thomas A. Munro; Michele R. Richards; Tracie A. Paine; Loren Berry; Zhiyang Zhao; Bryan L. Roth; Wei Xu; Lee Yuan Liu-Chen; William A. Carlezon; Bruce M. Cohen

Several preclinical studies indicate that selective κ-opioid receptor (KOR) antagonists have antidepressant-like effects, whereas KOR agonists have opposite effects, suggesting that each might be useful in the treatment of mood abnormalities. Salvinorin A (salvA) is a valuable KOR agonist for further study due to its high potency and receptor selectivity. However, it has short lasting effects in vivo and limited oral bioavailability, probably due to acetate metabolism. We compared the in vitro receptor binding selectivity of salvA and four analogs containing an ethyl ether (EE), isopropylamine (IPA), N-methylacetamide (NMA), or N-methylpropionamide (NMP) at C-2. All compounds showed high binding affinity for the KOR (Ki = 0.11–6.3 nM), although only salvA, EE, and NMA exhibited KOR selectivity. In a liver microsomal assay, salvA was least stable, whereas NMA and IPA displayed slower metabolic transformations. Intraperitoneal (i.p.) administration of salvA, NMA, and NMP dose-dependently elevated brain reward thresholds in the intracranial self-administration (ICSS) test, consistent with prodepressive-like KOR agonist effects. NMA and NMP were equipotent to salvA but displayed longer lasting effects (6- and 10-fold, respectively). A dose of salvA with prominent effects in the ICSS test after i.p. administration (2.0 mg/kg) was inactive after oral administration, whereas the same oral dose of NMA elevated ICSS thresholds. These studies suggest that, although salvA and NMA are similar in potency and selectivity as KOR agonists in vitro, NMA has improved stability and longer lasting actions that might make it more useful for studies of KOR agonist effects in animals and humans.


Bioorganic & Medicinal Chemistry | 2009

Modification of the furan ring of salvinorin A: Identification of a selective partial agonist at the kappa opioid receptor

Cécile Béguin; Katharine K. Duncan; Thomas A. Munro; Douglas M. Ho; Wei Xu; Lee-Yuan Liu-Chen; William A. Carlezon; Bruce M. Cohen

In an effort to find novel agents which selectively target the kappa opioid receptor (KOPR), we modified the furan ring of the highly potent and selective KOPR agonist salvinorin A. Introduction of small substituents at C-16 was well tolerated. 12-epi-Salvinorin A, synthesized in four steps from salvinorin A, was a selective partial agonist at the KOPR. No clear SAR patterns were observed for C-13 aryl ketones. Introducing a hydroxymethylene group between C-12 and the furan ring was tolerated. Small C-13 esters and ethers gave weak KOPR agonists, while all C-13 amides were inactive. Finally, substitution of oxadiazoles for the furan ring abolished affinity for the KOPR. None of the compounds displayed any KOPR antagonism or any affinity for mu or delta opioid receptors.


Neuropharmacology | 2009

Salvinorin A and derivatives: protection from metabolism does not prolong short-term, whole-brain residence.

Jacob M. Hooker; Thomas A. Munro; Cécile Béguin; David Alexoff; Colleen Shea; Youwen Xu; Bruce M. Cohen

Salvinorin A (SA) is a potent kappa opioid agonist with a brief duration of action. Consistent with this, our previous positron emission tomography (PET) studies of carbon-11 labeled SA showed that brain levels decrease rapidly after intravenous administration. SA is rapidly metabolized, giving the much less potent salvinorin B (SB), which is presumed to be responsible in part for SAs brief duration of action. To test this, we labeled the metabolically stable methyl ester of SA and SB with carbon-11 and compared their pharmacokinetics by PET imaging after intravenous administration to baboons. Labeling of salvinorin B ethoxymethyl ether (EOM-SB), a derivative with greater potency and resistance to metabolism, provided an additional test of the role of metabolism in brain efflux. Plasma analysis confirmed that SB and EOM-SB exhibited greater metabolic stability than SA. However, the three compounds exhibited very similar pharmacokinetics in brain, entering and exiting rapidly. This suggests that metabolism is not solely responsible for the brief brain residence time of SA. We determined that whole-brain concentrations of EOM-SB declined more slowly than SA after intraperitoneal administration in rodents. This is likely due to a combination in EOM-SBs increased metabolic stability and its decreased plasma protein affinity. Our results suggest that protecting salvinorin A derivatives from metabolism will prolong duration of action, but only when administered by routes giving slow absorption.


Beilstein Journal of Organic Chemistry | 2013

Studies toward bivalent κ opioids derived from salvinorin A: heteromethylation of the furan ring reduces affinity

Thomas A. Munro; Wei Xu; Douglas M. Ho; Lee-Yuan Liu-Chen; Bruce M. Cohen

Summary The recent crystal structure of the κ-opioid receptor (κ-OR) revealed, unexpectedly, that the antagonist JDTic is a bivalent ligand: in addition to the orthosteric pocket occupied by morphinans, JDTic also occupies a distinct (allotopic) pocket. Mutagenesis data suggest that salvinorin A (1) also binds to this allotopic pocket, adjacent to the aspartate residue that anchors the basic nitrogen atom of classical opiates (Asp138). It has been suggested that an H-bond donor appended to 1 might interact with Asp138, increasing affinity. Such a bivalent ligand might also possess altered functional selectivity. Based on modeling and known N-furanylmethyl opioid antagonists, we appended H-bond donors to the furan ring of 1. (Dimethylamino)methyl groups at C-15 or C-16 abolished affinity for κ-OR. Hydroxymethylation at C-16 was tolerated, but 15,16-bis-hydroxymethylation was not. Since allosteric modulators may go undetected in binding assays, we also tested these and other low-affinity derivatives of 1 for allosteric modulation of dynorphin A in the [35S]GTPγS assay. No modulation was detected. As an alternative attachment point for bivalent derivatives, we prepared the 2-(hydroxyethoxy)methyl ether, which retained high affinity for κ-OR. We discuss alternative design strategies for linked, fused or merged bivalent derivatives of 1.


eLife | 2018

Research: Sci-Hub provides access to nearly all scholarly literature

Daniel Himmelstein; Ariel Rodriguez Romero; Jacob Levernier; Thomas A. Munro; Stephen McLaughlin; Bastian Greshake Tzovaras; Casey S. Greene

The website Sci-Hub enables users to download PDF versions of scholarly articles, including many articles that are paywalled at their journal’s site. Sci-Hub has grown rapidly since its creation in 2011, but the extent of its coverage has been unclear. Here we report that, as of March 2017, Sci-Hub’s database contains 68.9% of the 81.6 million scholarly articles registered with Crossref and 85.1% of articles published in toll access journals. We find that coverage varies by discipline and publisher, and that Sci-Hub preferentially covers popular, paywalled content. For toll access articles, we find that Sci-Hub provides greater coverage than the University of Pennsylvania, a major research university in the United States. Green open access to toll access articles via licit services, on the other hand, remains quite limited. Our interactive browser at https://greenelab.github.io/scihub allows users to explore these findings in more detail. For the first time, nearly all scholarly literature is available gratis to anyone with an Internet connection, suggesting the toll access business model may become unsustainable.


Acta Crystallographica Section E-structure Reports Online | 2012

Salvinorin B Meth­oxy­methyl Ether

Thomas A. Munro; Douglas M. Ho; Bruce M. Cohen

The title compound [MOM-SalB; systematic name: methyl (2S,4aR,6aR,7R,9S,10aS,10bR)-2-(3-furyl)-9-methoxymethoxy-6a,10b-dimethyl-4,10-dioxo-2,4a,5,6,7,8,9,10a-octahydro-1H-benzo[f]isochromene-7-carboxylate], C23H30O8, is a derivative of the κ-opioid salvinorin A with enhanced potency, selectivity, and duration of action. Superimposition of their crystal structures reveals, surprisingly, that the terminal C and O atoms of the MOM group overlap with the corresponding atoms in salvinorin A, which are separated by an additional bond. This counter-intuitive isosterism is possible because the MOM ether adopts the ‘classic anomeric’ conformation (gauche–gauche), tracing a helix around the planar acetate of salvinorin A. This overlap is not seen in the recently reported structure of the tetrahydropyranyl ether, which is less potent. The classic anomeric conformation is strongly favoured in alkoxymethyl ethers, but not in substituted acetals, which may contribute to their reduced potency. This structure may prove useful in evaluating models of the activated κ-opioid receptor.


Journal of Medicinal Chemistry | 2005

Studies Toward the Pharmacophore of Salvinorin A, a Potent Kappa Opioid Receptor Agonist

Thomas A. Munro; Mark A. Rizzacasa; Bryan L. Roth; Beth Ann Toth; Feng Yan

Collaboration


Dive into the Thomas A. Munro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan L. Roth

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge