Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecile Chalouni is active.

Publication


Featured researches published by Cecile Chalouni.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome

Christopher J. Westlake; Lisa M. Baye; Maxence V. Nachury; Kevin J. Wright; Karen E. Ervin; Lilian Phu; Cecile Chalouni; John S. Beck; Donald S. Kirkpatrick; Diane C. Slusarski; Val C. Sheffield; Richard H. Scheller; Peter K. Jackson

Sensory and signaling pathways are exquisitely organized in primary cilia. Bardet-Biedl syndrome (BBS) patients have compromised cilia and signaling. BBS proteins form the BBSome, which binds Rabin8, a guanine nucleotide exchange factor (GEF) activating the Rab8 GTPase, required for ciliary assembly. We now describe serum-regulated upstream vesicular transport events leading to centrosomal Rab8 activation and ciliary membrane formation. Using live microscopy imaging, we show that upon serum withdrawal Rab8 is observed to assemble the ciliary membrane in ∼100 min. Rab8-dependent ciliary assembly is initiated by the relocalization of Rabin8 to Rab11-positive vesicles that are transported to the centrosome. After ciliogenesis, Rab8 ciliary transport is strongly reduced, and this reduction appears to be associated with decreased Rabin8 centrosomal accumulation. Rab11-GTP associates with the Rabin8 COOH-terminal region and is required for Rabin8 preciliary membrane trafficking to the centrosome and for ciliogenesis. Using zebrafish as a model organism, we show that Rabin8 and Rab11 are associated with the BBS pathway. Finally, using tandem affinity purification and mass spectrometry, we determined that the transport protein particle (TRAPP) II complex associates with the Rabin8 NH2-terminal domain and show that TRAPP II subunits colocalize with centrosomal Rabin8 and are required for Rabin8 preciliary targeting and ciliogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking

Yasuko Iwakiri; Ayano Satoh; Suvro Chatterjee; Derek Toomre; Cecile Chalouni; David Fulton; Roberto J. Groszmann; Vijay H. Shah; William C. Sessa

Nitric oxide (NO) is a highly diffusible and short-lived physiological messenger. Despite its diffusible nature, NO modifies thiol groups of specific cysteine residues in target proteins and alters protein function via S-nitrosylation. Although intracellular S-nitrosylation is a specific posttranslational modification, the defined localization of an NO source (nitric oxide synthase, NOS) with protein S-nitrosylation has never been directly demonstrated. Endothelial NOS (eNOS) is localized mainly on the Golgi apparatus and in plasma membrane caveolae. Here, we show by using eNOS targeted to either the Golgi or the nucleus that S-nitrosylation is concentrated at the primary site of eNOS localization. Furthermore, localization of eNOS on the Golgi enhances overall Golgi protein S-nitrosylation, the specific S-nitrosylation of N-ethylmaleimide-sensitive factor and reduces the speed of protein transport from the endoplasmic reticulum to the plasma membrane in a reversible manner. These data indicate that local NOS action generates organelle-specific protein S-nitrosylation reactions that can regulate intracellular transport processes.


Nature | 2015

Novel antibody–antibiotic conjugate eliminates intracellular S. aureus

Sophie M. Lehar; Thomas H. Pillow; Min Xu; Leanna Staben; Kimberly Kajihara; Richard Vandlen; Laura DePalatis; Helga Raab; Wouter L. W. Hazenbos; J. Hiroshi Morisaki; Janice Kim; Summer Park; Martine Darwish; Byoung-Chul Lee; Hilda Hernandez; Kelly M. Loyet; Patrick Lupardus; Rina Fong; Donghong Yan; Cecile Chalouni; Elizabeth Luis; Yana Khalfin; Emile Plise; Jonathan Cheong; Joseph P. Lyssikatos; Magnus Strandh; Klaus Koefoed; Peter S. Andersen; John A. Flygare; Man Wah Tan

Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy. Here we confirm that intracellular reservoirs of S. aureus in mice comprise a virulent subset of bacteria that can establish infection even in the presence of vancomycin, and we introduce a novel therapeutic that effectively kills intracellular S. aureus. This antibody–antibiotic conjugate consists of an anti-S. aureus antibody conjugated to a highly efficacious antibiotic that is activated only after it is released in the proteolytic environment of the phagolysosome. The antibody–antibiotic conjugate is superior to vancomycin for treatment of bacteraemia and provides direct evidence that intracellular S. aureus represents an important component of invasive infections.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Mature dendritic cells use endocytic receptors to capture and present antigens.

Craig D. Platt; Jessica K. Ma; Cecile Chalouni; Melanie Ebersold; Hani Bou-Reslan; Richard A. D. Carano; Ira Mellman; Lélia Delamarre

In response to inflammatory stimuli, dendritic cells (DCs) trigger the process of maturation, a terminal differentiation program required to initiate T-lymphocyte responses. A hallmark of maturation is down-regulation of endocytosis, which is widely assumed to restrict the ability of mature DCs to capture and present antigens encountered after the initial stimulus. We found that mature DCs continue to accumulate antigens, especially by receptor-mediated endocytosis and phagocytosis. Internalized antigens are transported normally to late endosomes and lysosomes, loaded onto MHC class II molecules (MHCII), and then presented efficiently to T cells. This occurs despite the fact that maturation results in the general depletion of MHCII from late endocytic compartments, with MHCII enrichment being typically thought to be a required feature of antigen processing and peptide loading compartments. Internalized antigens can also be cross-presented on MHC class I molecules, without any reduction in efficiency relative to immature DCs. Thus, although mature DCs markedly down-regulate their capacity for macropinocytosis, they continue to capture, process, and present antigens internalized via endocytic receptors, suggesting that they may continuously initiate responses to newly encountered antigens during the course of an infection.


Journal of Cell Biology | 2004

Golgi duplication in Trypanosoma brucei

Cynthia Y. He; Helen H. Ho; Joerg Malsam; Cecile Chalouni; C. West; Elisabetta Ullu; Derek Toomre; Graham Warren

Duplication of the single Golgi apparatus in the protozoan parasite Trypanosoma brucei has been followed by tagging a putative Golgi enzyme and a matrix protein with variants of GFP. Video microscopy shows that the new Golgi appears de novo, near to the old Golgi, about two hours into the cell cycle and grows over a two-hour period until it is the same size as the old Golgi. Duplication of the endoplasmic reticulum (ER) export site follows exactly the same time course. Photobleaching experiments show that the new Golgi is not the exclusive product of the new ER export site. Rather, it is supplied, at least in part, by material directly from the old Golgi. Pharmacological experiments show that the site of the new Golgi and ER export is determined by the location of the new basal body.


Nature Immunology | 2014

Transcriptional programming of dendritic cells for enhanced MHC class II antigen presentation

Bryan Vander Lugt; Aly A. Khan; Jason A. Hackney; Smita Agrawal; Justin Lesch; Meijuan Zhou; Wyne P. Lee; Summer Park; Min Xu; Jason DeVoss; Chauncey J. Spooner; Cecile Chalouni; Lélia Delamarre; Ira Mellman; Harinder Singh

CD11b+ dendritic cells (DCs) seem to be specialized for presenting antigens via major histocompatibility (MHC) class II complexes to stimulate helper T cells, but the genetic and regulatory basis for this is not established. Conditional deletion of Irf4 resulted in loss of CD11b+ DCs, impaired formation of peptide–MHC class II complexes and defective priming of helper T cells but not of cytotoxic T lymphocyte (CTL) responses. Gene expression and chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) analyses delineated an IRF4-dependent regulatory module that programs enhanced MHC class II antigen presentation. Expression of the transcription factor IRF4 but not of IRF8 restored the ability of IRF4-deficient DCs to efficiently process and present antigen to MHC class II–restricted T cells and promote helper T cell responses. We propose that the evolutionary divergence of IRF4 and IRF8 facilitated the specialization of DC subsets for distinct modes of antigen presentation and priming of helper T cell versus CTL responses.


Journal of Experimental Medicine | 2013

Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation

Lillian Cohn; Bithi Chatterjee; Filipp Esselborn; Anna Smed-Sörensen; Norihiro Nakamura; Cecile Chalouni; Byoung-Chul Lee; Richard Vandlen; Tibor Keler; Peter Lauer; Dirk G. Brockstedt; Ira Mellman; Lélia Delamarre

Human BDCA3 DCs are superior to BDCA1 DCs at antigen cross presentation when delivered to late endosomes and lysosomes but not when delivered to early endosomes.


Blood | 2012

Internalization and endosomal degradation of receptor-bound antigens regulate the efficiency of cross presentation by human dendritic cells.

Bithi Chatterjee; Anna Smed-Sörensen; Lillian Cohn; Cecile Chalouni; Richard Vandlen; Byoung-Chul Lee; Jenifer Widger; Tibor Keler; Lélia Delamarre; Ira Mellman

Dendritic cells (DCs) can capture extracellular antigens and load resultant peptides on to MHC class I molecules, a process termed cross presentation. The mechanisms of cross presentation remain incompletely understood, particularly in primary human DCs. One unknown is the extent to which antigen delivery to distinct endocytic compartments determines cross presentation efficiency, possibly by influencing antigen egress to the cytosol. We addressed the problem directly and quantitatively by comparing the cross presentation of identical antigens conjugated with antibodies against different DC receptors that are targeted to early or late endosomes at distinct efficiencies. In human BDCA1+ and monocyte-derived DCs, CD40 and mannose receptor targeted antibody conjugates to early endosomes, whereas DEC205 targeted antigen primarily to late compartments. Surprisingly, the receptor least efficient at internalization, CD40, was the most efficient at cross presentation. This did not reflect DC activation by CD40, but rather its relatively poor uptake or intra-endosomal degradation compared with mannose receptor or DEC205. Thus, although both early and late endosomes appear to support cross presentation in human DCs, internalization efficiency, especially to late compartments, may be a negative predictor of activity when selecting receptors for vaccine development.


Nature | 2018

TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells

Sanjeev Mariathasan; Shannon J. Turley; Dorothee Nickles; Alessandra Castiglioni; Kobe Yuen; Yulei Wang; Edward E. Kadel; Hartmut Koeppen; Jillian L. Astarita; Rafael Cubas; Suchit Jhunjhunwala; Romain Banchereau; Yagai Yang; Yinghui Guan; Cecile Chalouni; James Ziai; Yasin Şenbabaoǧlu; Stephen Santoro; Daniel Sheinson; Jeffrey Hung; Jennifer Giltnane; Andrew A. Pierce; Kathryn Mesh; Steve Lianoglou; Johannes Riegler; Richard A. D. Carano; Pontus Eriksson; Mattias Höglund; Loan Somarriba; Daniel L. Halligan

Therapeutic antibodies that block the programmed death-1 (PD-1)–programmed death-ligand 1 (PD-L1) pathway can induce robust and durable responses in patients with various cancers, including metastatic urothelial cancer. However, these responses only occur in a subset of patients. Elucidating the determinants of response and resistance is key to improving outcomes and developing new treatment strategies. Here we examined tumours from a large cohort of patients with metastatic urothelial cancer who were treated with an anti-PD-L1 agent (atezolizumab) and identified major determinants of clinical outcome. Response to treatment was associated with CD8+ T-effector cell phenotype and, to an even greater extent, high neoantigen or tumour mutation burden. Lack of response was associated with a signature of transforming growth factor β (TGFβ) signalling in fibroblasts. This occurred particularly in patients with tumours, which showed exclusion of CD8+ T cells from the tumour parenchyma that were instead found in the fibroblast- and collagen-rich peritumoural stroma; a common phenotype among patients with metastatic urothelial cancer. Using a mouse model that recapitulates this immune-excluded phenotype, we found that therapeutic co-administration of TGFβ-blocking and anti-PD-L1 antibodies reduced TGFβ signalling in stromal cells, facilitated T-cell penetration into the centre of tumours, and provoked vigorous anti-tumour immunity and tumour regression. Integration of these three independent biological features provides the best basis for understanding patient outcome in this setting and suggests that TGFβ shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T-cell infiltration.


Nature Cell Biology | 2007

Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC

Andrew Mara; Joshua Schroeder; Cecile Chalouni; Scott A. Holley

Zebrafish somitogenesis is governed by a segmentation clock that generates oscillations in expression of several Notch pathway genes, including her1, her7 and deltaC. Using a combination of pharmacological inhibition and Mendelian genetics, we show that DeltaD and DeltaC, two Notch ligands, represent functionally distinct signals within the segmentation clock. Using high-resolution fluorescent in situ hybridization, the oscillations were divided into phases based on eight distinct subcellular patterns of mRNA localization for 140,000 cells. her1, her7 and deltaC expression was examined in wild-type, deltaD−/− and deltaC−/− embryos. We identified areas within the tailbud where the clock is set up in the progenitor cells (priming), where the clock starts running (initiation), and where the clocks of neighbouring cells are entrained (synchronization). We find that the clocks of motile cells are primed by deltaD in a progenitor zone in the posterior tailbud and that deltaD is required for cells to initiate oscillations on exiting this zone. Oscillations of adjacent cells are synchronized and amplified by deltaC in the posterior presomitic mesoderm as cell movement subsides and cells maintain stable neighbour relationships.

Collaboration


Dive into the Cecile Chalouni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge