Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecile Holweg is active.

Publication


Featured researches published by Cecile Holweg.


Thorax | 2015

Lebrikizumab in moderate-to-severe asthma: pooled data from two randomised placebo-controlled studies

Nicola A. Hanania; Michael Noonan; Jonathan Corren; Phillip E. Korenblat; Yanan Zheng; Saloumeh Kadkhodayan Fischer; Melissa Cheu; Wendy S. Putnam; Elaine Murray; Heleen Scheerens; Cecile Holweg; Romeo Maciuca; Sarah Gray; Ramona Doyle; Dana McClintock; Julie Olsson; John G. Matthews; Karl Yen

Introduction In a subset of patients with asthma, standard-of-care treatment does not achieve disease control, highlighting the need for novel therapeutic approaches. Lebrikizumab is a humanised, monoclonal antibody that binds to and blocks interleukin-13 activity. Methods LUTE and VERSE were replicate, randomised, double-blind, placebo-controlled studies, evaluating multiple doses of lebrikizumab in patients with uncontrolled asthma despite the use of medium-to-high-dose inhaled corticosteroid and a second controller. Patients received lebrikizumab 37.5, 125, 250 mg or placebo subcutaneously every four weeks. The primary endpoint was the rate of asthma exacerbations during the placebo-controlled period. Analyses were performed on prespecified subgroups based on baseline serum periostin levels. Following the discovery of a host-cell impurity in the study drug material, protocols were amended to convert from phase III to phase IIb. Subsequently, dosing of study medication was discontinued early as a precautionary measure. The data collected for analysis were from a placebo-controlled period of variable duration and pooled across both studies. Results The median duration of treatment was approximately 24 weeks. Treatment with lebrikizumab reduced the rate of asthma exacerbations, which was more pronounced in the periostin-high patients (all doses: 60% reduction) than in the periostin-low patients (all doses: 5% reduction); no dose–response was evident. Lung function also improved following lebrikizumab treatment, with greatest increase in FEV1 in periostin-high patients (all doses: 9.1% placebo-adjusted improvement) compared with periostin-low patients (all doses: 2.6% placebo-adjusted improvement). Lebrikizumab was well tolerated and no clinically important safety signals were observed. Conclusions These data are consistent with, and extend, previously published results demonstrating the efficacy of lebrikizumab in improving rate of asthma exacerbations and lung function in patients with moderate-to-severe asthma who remain uncontrolled despite current standard-of-care treatment. Trial registration numbers The LUTE study was registered under NCT01545440 and the VERSE study under NCT01545453 at http://www.clinicaltrials.gov


The Lancet Respiratory Medicine | 2016

Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials

Nicola A. Hanania; Phillip E. Korenblat; Kenneth R. Chapman; Eric D. Bateman; Petr Kopecky; Pierluigi Paggiaro; Akihito Yokoyama; Julie Olsson; Sarah Gray; Cecile Holweg; Mark D. Eisner; Charles Asare; Saloumeh Kadkhodayan Fischer; Kun Peng; Wendy S. Putnam; John G. Matthews

BACKGROUND In phase 2 trials, lebrikizumab, an anti-interleukin-13 monoclonal antibody, reduced exacerbation rates and improved FEV1 in patients with uncontrolled asthma, particularly in those with high concentrations of type 2 biomarkers (eg, periostin or blood eosinophils). We undertook replicate phase 3 studies to assess the efficacy and safety of lebrikizumab in patients with uncontrolled asthma despite inhaled corticosteroids and at least one second controller medication. METHODS Adult patients with uncontrolled asthma, pre-bronchodilator FEV1 40-80% predicted, and stable background therapy were randomly assigned (1:1:1) with an interactive voice-web-based response system to receive lebrikizumab 37·5 mg or 125 mg, or placebo subcutaneously, once every 4 weeks. Randomisation was stratified by screening serum periostin concentration, history of asthma exacerbations within the last 12 months, baseline asthma medications, and country. The primary efficacy endpoint was the rate of asthma exacerbations over 52 weeks in biomarker-high patients (periostin ≥50 ng/mL or blood eosinophils ≥300 cells per μL), analysed with a Poisson regression model corrected for overdispersion with Pearson χ2 that included terms for treatment group, number of asthma exacerbations within the 12 months before study entry, baseline asthma medications, geographic region, screening periostin concentration, and blood eosinophil counts as covariates. Both trials are registered at ClinicalTrials.gov, LAVOLTA I, number NCT01867125, and LAVOLTA II, number NCT01868061. FINDINGS 1081 patients were treated in LAVOLTA I and 1067 patients in LAVOLTA II. Over 52 weeks, lebrikizumab reduced exacerbation rates in biomarker-high patients in the 37·5 mg dose group (rate ratio [RR] 0·49 [95% CI 0·34-0·69], p<0·0001) and in the 125 mg dose group (RR 0·70 [0·51-0·95], p=0·0232) versus placebo in LAVOLTA I. Exacerbation rates were also reduced in biomarker-high patients in both dose groups versus placebo in LAVOLTA II (37·5 mg: RR 0·74 [95% CI 0·54-1·01], p=0·0609; 125 mg: RR 0·74 [0·54-1·02], p=0·0626). Pooling both studies, the proportion of patients who experienced treatment-emergent adverse events (79% [1125 of 1432 patients] for both lebrikizumab doses vs 80% [576 of 716 patients] for placebo), serious adverse events (8% [115 patients] for both lebrikizumab doses vs 9% [65 patients] for placebo), and adverse events leading to study drug discontinuation (3% [49 patients] for both lebrikizumab doses vs 4% [31 patients] for placebo) were similar between lebrikizumab and placebo. The following serious adverse events were reported in the placebo-controlled period: one event of aplastic anaemia and five serious adverse events related to raised concentrations of eosinophils in patients treated with lebrikizumab and one event of eosinophilic pneumonia in the placebo group. INTERPRETATION Lebrikizumab did not consistently show significant reduction in asthma exacerbations in biomarker-high patients. However, it blocked interleukin-13 as evidenced by the effect on interleukin-13-related pharmacodynamic biomarkers, and clinically relevant changes could not be ruled out. FUNDING F Hoffmann-La Roche.


Cellular and Molecular Life Sciences | 2014

The role of periostin in tissue remodeling across health and disease

Simon J. Conway; Kenji Izuhara; Yasusei Kudo; Judith Litvin; Roger R. Markwald; Gaoliang Ouyang; Joseph R. Arron; Cecile Holweg; Akira Kudo

Periostin, also termed osteoblast-specific factor 2, is a matricellular protein with known functions in osteology, tissue repair, oncology, cardiovascular and respiratory systems, and in various inflammatory settings. However, most of the research to date has been conducted in divergent and circumscribed areas meaning that the overall understanding of this intriguing molecule remains fragmented. Here, we integrate the available evidence on periostin expression, its normal role in development, and whether it plays a similar function during pathologic repair, regeneration, and disease in order to bring together the different research fields in which periostin investigations are ongoing. In spite of the seemingly disparate roles of periostin in health and disease, tissue remodeling as a response to insult/injury is emerging as a common functional denominator of this matricellular molecule. Periostin is transiently upregulated during cell fate changes, either physiologic or pathologic. Combining observations from various conditions, a common pattern of events can be suggested, including periostin localization during development, insult and injury, epithelial–mesenchymal transition, extracellular matrix restructuring, and remodeling. We propose mesenchymal remodeling as an overarching role for the matricellular protein periostin, across physiology and disease. Periostin may be seen as an important structural mediator, balancing appropriate versus inappropriate tissue adaption in response to insult/injury.


Arthritis Research & Therapy | 2014

Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics.

Glynn Dennis; Cecile Holweg; Sarah K. Kummerfeld; David F. Choy; Alvernia Francesca Setiadi; Jason A. Hackney; Peter M. Haverty; Houston Gilbert; Wei Y. Lin; Lauri Diehl; Saloumeh Kadkhodayan Fischer; An Song; David Musselman; Micki Klearman; Cem Gabay; Arthur Kavanaugh; Judith Endres; David A. Fox; Flavius Martin; Michael J. Townsend

IntroductionRheumatoid arthritis (RA) is a complex and clinically heterogeneous autoimmune disease. Currently, the relationship between pathogenic molecular drivers of disease in RA and therapeutic response is poorly understood.MethodsWe analyzed synovial tissue samples from two RA cohorts of 49 and 20 patients using a combination of global gene expression, histologic and cellular analyses, and analysis of gene expression data from two further publicly available RA cohorts. To identify candidate serum biomarkers that correspond to differential synovial biology and clinical response to targeted therapies, we performed pre-treatment biomarker analysis compared with therapeutic outcome at week 24 in serum samples from 198 patients from the ADACTA (ADalimumab ACTemrA) phase 4 trial of tocilizumab (anti-IL-6R) monotherapy versus adalimumab (anti-TNFα) monotherapy.ResultsWe documented evidence for four major phenotypes of RA synovium – lymphoid, myeloid, low inflammatory, and fibroid - each with distinct underlying gene expression signatures. We observed that baseline synovial myeloid, but not lymphoid, gene signature expression was higher in patients with good compared with poor European league against rheumatism (EULAR) clinical response to anti-TNFα therapy at week 16 (P =0.011). We observed that high baseline serum soluble intercellular adhesion molecule 1 (sICAM1), associated with the myeloid phenotype, and high serum C-X-C motif chemokine 13 (CXCL13), associated with the lymphoid phenotype, had differential relationships with clinical response to anti-TNFα compared with anti-IL6R treatment. sICAM1-high/CXCL13-low patients showed the highest week 24 American College of Rheumatology (ACR) 50 response rate to anti-TNFα treatment as compared with sICAM1-low/CXCL13-high patients (42% versus 13%, respectively, P =0.05) while anti-IL-6R patients showed the opposite relationship with these biomarker subgroups (ACR50 20% versus 69%, P =0.004).ConclusionsThese data demonstrate that underlying molecular and cellular heterogeneity in RA impacts clinical outcome to therapies targeting different biological pathways, with patients with the myeloid phenotype exhibiting the most robust response to anti-TNFα. These data suggest a path to identify and validate serum biomarkers that predict response to targeted therapies in rheumatoid arthritis and possibly other autoimmune diseases.Trial registrationClinicalTrials.gov NCT01119859


Science Translational Medicine | 2011

A Plasmablast Biomarker for Nonresponse to Antibody Therapy to CD20 in Rheumatoid Arthritis

Kasia Owczarczyk; Preeti Lal; Alexander R. Abbas; Kristen Wolslegel; Cecile Holweg; Wolfgang Dummer; Ariella Kelman; Paul Brunetta; Nicholas Lewin-Koh; Marco Sorani; Diane Leong; Paul J. Fielder; David Yocum; Carole Ho; Ward Ortmann; Michael J. Townsend; Timothy W. Behrens

Plasmablast biomarkers predict whether rheumatoid arthritis patients will respond to therapeutic antibodies to CD20. A Molecular Magic Eight Ball Ever wish you could predict the future? From children’s toys to psychic consultants, there’s an entire industry devoted to providing people with insight into upcoming events. This desire for precognition extends to clinical medicine—both doctors and patients wish they could predict whether a treatment will work for a particular disease in a particular patient. Thus, the search for biomarkers was born. However, many studies that claim to identify “biomarkers” have as little experimental validation as a late-night TV psychic, making the truly validated biomarker a rare gem. Owczarczyk et al. now develop such a predictor for nonresponsiveness to anti-CD20 antibody therapy for rheumatoid arthritis. Rituximab and ocrelizumab are therapeutic antibodies that bind to CD20 on the surface of effector and memory B cells, causing them to be depleted from the circulation. These antibodies can be helpful to rheumatoid arthritis patients who don’t fare well with more general antirheumatic drugs, such as nonsteroidal anti-inflammatory drugs, and disease-modifying antirheumatic drugs, such as hydroxychloroquine, sulfasalazine, leflunomide, or methotrexate. But not all patients respond to these expensive targeted biologics. Owczarczyk et al. observed that rheumatoid arthritis patients who don’t respond to anti-CD20 antibodies had elevated amounts of IgJ mRNA, a marker for antibody-secreting plasmablasts. They then performed prospective testing of IgJ mRNA concentrations in one ocrelizumab and two rituximab patient cohorts and found that this marker could predict nonresponse to anti-CD20 antibody therapy. Moreover, a combination mRNA biomarker, IgJhiFCRL5lo, improved test performance over IgJhi alone. Will these biomarkers also be useful in stratifying response rates in other diseases in which anti-CD20 antibody therapy has shown clinical activity such as relapsing-remitting multiple sclerosis and ANCA-associated vasculitis? Cannot predict now. Ask again later. An important goal for personalized health care is the identification of biomarkers that predict the likelihood of treatment responses. Here, we tested the hypothesis that quantitative mRNA assays for B lineage cells in blood could serve as baseline predictors of therapeutic response to B cell depletion therapy in subjects with rheumatoid arthritis (RA). In samples from the REFLEX trial of rituximab in inadequate responders to antibodies to tumor necrosis factor–α, a 25% subgroup of treated subjects with elevated baseline mRNA levels of IgJ, a marker for antibody-secreting plasmablasts, showed reduced clinical response rates. There were no significant efficacy differences in the placebo arm subjects stratified by this marker. Prospective testing of the IgJ biomarker in the DANCER and SERENE rituximab clinical trial cohorts and the SCRIPT ocrelizumab cohort confirmed the utility of this marker to predict nonresponse to anti-CD20 therapy. A combination mRNA biomarker, IgJ hiFCRL5lo, showed improved test performance over IgJ hi alone. This study demonstrates that baseline blood levels of molecular markers for late-stage B lineage plasmablasts identify a ~20% subgroup of active RA subjects who are unlikely to gain substantial clinical benefit from anti-CD20 B cell depletion therapy.


American Journal of Respiratory and Critical Care Medicine | 2016

Roles of Periostin in Respiratory Disorders

Kenji Izuhara; Simon J. Conway; Bethany B. Moore; Hisako Matsumoto; Cecile Holweg; John G. Matthews; Joseph R. Arron

Periostin is a matricellular protein that has been implicated in many disease states. It interacts with multiple signaling cascades to modulate the expression of downstream genes that regulate cellular interactions within the extracellular matrix. This review focuses on the role of periostin in respiratory diseases, including asthma and idiopathic pulmonary fibrosis, and its potential to help guide treatment or assess prognosis. Epithelial injury is a common feature of many respiratory diseases, resulting in the secretion, among others, of periostin, which is subsequently involved in airway remodeling and other aspects of pulmonary pathophysiology. In asthma, periostin is recognized as a biomarker of type 2 inflammation; POSTN gene expression is up-regulated in bronchial epithelial cells by IL-13 and IL-4. Serum periostin has been evaluated for the identification of patients with increased clinical benefit from treatment with anti-IL-13 (lebrikizumab, tralokinumab) and anti-IgE (omalizumab) therapy and may be prognostic for increased risk of asthma exacerbations and progressive lung function decline. Furthermore, in asthma, periostin may regulate subepithelial fibrosis and mucus production and may serve as a systemic biomarker of eosinophilic airway inflammation. Periostin is also highly expressed in the lungs of patients with idiopathic pulmonary fibrosis, and its serum levels may predict clinical progression. Overall, periostin contributes to multiple pathogenic processes across respiratory diseases, and peripheral blood levels of periostin may have utility as a biomarker of treatment response and disease progression.


Arthritis & Rheumatism | 2011

Inflammation and autoantibody markers identify rheumatoid arthritis patients with enhanced clinical benefit following rituximab treatment

Preeti Lal; Zheng Su; Cecile Holweg; Gregg J. Silverman; Sergio Schwartzman; Ariella Kelman; Simon Read; Greg Spaniolo; John G. Monroe; Timothy W. Behrens; Michael J. Townsend

OBJECTIVE Rituximab significantly improves the signs and symptoms of rheumatoid arthritis (RA) and slows the progression of joint damage. The aim of this study was to identify clinical characteristics and biomarkers that identify patients with RA in whom the clinical benefit of rituximab may be enhanced. METHODS The study group comprised 1,008 RA patients from 2 independent randomized placebo-controlled phase III clinical trials (REFLEX [Randomized Evaluation of Long-Term Efficacy of Rituximab in Rheumatoid Arthritis] and SERENE [Study Evaluating Rituximabs Efficacy in Methotrexate Inadequate Responders]). A novel threshold selection method was used to identify baseline candidate biomarkers present in at least 20% of patients that enriched for placebo-corrected American College of Rheumatology 50% improvement (ACR50 response; a high clinical efficacy bar) at week 24 after the first course of rituximab. RESULTS The presence of IgM rheumatoid factor (IgM-RF), IgG-RF, IgA-RF, and IgG anti-cyclic citrullinated peptide (anti-CCP) antibodies together with an elevated C-reactive protein (CRP) level were associated with enhanced placebo-corrected ACR50 response rates in the REFLEX patients with RA who had an inadequate response to anti-tumor necrosis factor therapies. These findings were independently replicated using samples from patients in SERENE who had an inadequate response to disease-modifying antirheumatic drug treatment. The combination of an elevated baseline CRP level together with an elevated level of any RF isotype and/or IgG anti-CCP antibodies was further associated with an enhanced benefit to rituximab. CONCLUSION The presence of any RF isotype and/or IgG anti-CCP autoantibodies together with an elevated CRP level identifies a subgroup of patients with RA in whom the benefit of rituximab treatment may be enhanced. Although the clinical benefit of rituximab was greater in the biomarker-positive population compared with the biomarker-negative population, the clinical benefit of rituximab compared with placebo was also clinically meaningful in the biomarker-negative population.


Annals of the Rheumatic Diseases | 2012

Pretreatment synovial transcriptional profile is associated with early and late clinical response in rheumatoid arthritis patients treated with rituximab

Vanessa Hogan; Cecile Holweg; David F. Choy; Sarah K. Kummerfeld; Jason A. Hackney; Y K Onno Teng; Michael J. Townsend; Jacob M vanLaar

Objective Personalised healthcare is contingent on the identification of biomarkers that represent disease relevant pathways and predict drug response. The authors aimed to develop a gene expression signature in synovial tissue that could enrich clinical response of rheumatoid arthritis (RA) patients to rituximab. Methods The authors studied synovial gene expression using high-throughput quantitative real-time-PCR in 20 RA patients who underwent arthroscopy before and after treatment with rituximab. Several objective approaches were used to explore patterns in the data and to find genes associated with changes in disease activity due to treatment. Results This analysis revealed two patient populations associated with distinct clinical, laboratory and histological features and, importantly, showed enrichment for response (60% non-responders vs 90% responders). A composite baseline gene score (GS) correlated with change in disease activity score (ΔDAS) between baseline and month 3 (r=0.74, p=0.0002), but also with ΔDAS at later time-points (month 9, r=0.54, p=0.016; month 15, r=0.45, p=0.06; month 21, r=0.72, p=0.003). Notably, the GS significantly correlated with baseline erythrocyte sedimentation rate (r=0.69, p=0.0008), but not with other DAS components. The GS genes represented T cell, macrophage, remodelling and interferon-α biology. Responders demonstrated higher expression of macrophage and T cell genes, while non-responders showed higher expression of interferon-α and remodelling genes. Conclusions This study reveals a baseline synovial GS that correlates with early and late clinical responses to rituximab. The GS biology suggests that T cells and macrophages are important for response to B cell depleting therapy, while expression of remodelling and interferon-α genes correlates with poor response.


European Respiratory Journal | 2016

Serum periostin in obstructive airways disease

James Fingleton; Irene Braithwaite; Justin Travers; Darren Bowles; Rianne Strik; Robert Siebers; Cecile Holweg; John G. Matthews; Mark Weatherall; Richard Beasley

Serum periostin is a potential biomarker of response to therapies that target type 2 inflammation in asthma. The objectives of this study were to describe: 1) the distribution of serum periostin levels in adults with symptomatic airflow obstruction; 2) its relationship with other variables, including type 2 biomarkers; and 3) the effect of inhaled corticosteroids on periostin levels. Serum periostin levels were measured in a cross-sectional study exploring phenotypes and biomarkers in 386 patients aged 18–75 years who reported wheeze and breathlessness in the past 12 months. In 49 ICS-naïve patients, periostin levels were measured again after 12 weeks of budesonide (800 μg·day−1). The distribution of serum periostin levels was right skewed (mean±sd 57.3±18.6 ng·mL−1, median (interquartile range) 54.0 (45.1–65.6) ng·mL−1, range 15.0–164.7 ng·mL−1). Periostin was positively associated with exhaled nitric oxide (Spearmans rho=0.22, p<0.001), blood eosinophil count (Spearmans rho=0.21, p<0.001), and total IgE (Spearmans rho=0.14, p=0.007). The Hodges–Lehmann estimator (95% CI) of change in periostin level after ICS therapy was −4.8 (−6.7– −3.2) ng·mL−1 (p<0.001). These findings provide data on the distribution of serum periostin in adults with symptomatic airflow obstruction, the weak associations between periostin and other type 2 markers, and the reduction in periostin with inhaled corticosteroid therapy. Serum periostin levels may be a distinct marker of type 2 inflammation in adults with symptomatic airways disease http://ow.ly/XAKyK


The Journal of Allergy and Clinical Immunology | 2016

Serum periostin is associated with type 2 immunity in severe asthma

Mats W. Johansson; Michael D. Evans; Gina M. Crisafi; Cecile Holweg; John G. Matthews; Nizar N. Jarjour

To the Editor: Periostin is an extracellular matrix protein that is upregulated by type 2 cytokines IL-4 and IL-13 in bronchial epithelial cells and lung fibroblasts, is deposited widely in the airway of subjects with asthma, and is one of the most differentially expressed bronchial epithelial genes between patients with asthma and healthy control subjects. Periostin is particularly highly expressed in patients identified as TH2-high or type 2-high subjects. High levels of serum periostin are associated with high numbers of sputum and tissue eosinophils in asthma, with increased clinical benefit from anti–IL-13 treatment and with decline in lung function and exacerbations in patients with elevated fraction of exhaled nitric oxide (FENO). Plasma periostin does not change after allergen challenge, indicating that periostin is a marker of chronic (and not acute) airway inflammation.Mice lacking periostin have been reported to respond to lung challenge with significantly decreased numbers of eosinophils in the lung and increased numbers in blood. In vitro, periostin supports adhesion and migration of IL-5–stimulated human eosinophils. Together, these studies indicate that periostin is a type 2 immunity high–related protein that promotes eosinophil recruitment to the airway in asthma. Although the relationship between periostin and type 2 inflammation is reasonably well established, its association with asthma severity has not been demonstrated. To address this question, we analyzed serum periostin in 153 subjects who were recruited at the University of Wisconsin to participate in the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program (SARP). Participants included patients with American Thoracic Society–defined severe asthma (n 5 51) or nonsevere asthma (n 5 75), and normal subjects (n 5 27). Our

Collaboration


Dive into the Cecile Holweg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicola A. Hanania

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Phillip E. Korenblat

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge