Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David F. Choy is active.

Publication


Featured researches published by David F. Choy.


American Journal of Respiratory and Critical Care Medicine | 2013

Exploring the Effects of Omalizumab in Allergic Asthma

Nicola A. Hanania; Sally E. Wenzel; Karin Rosén; Hsin-Ju Hsieh; Sofia Mosesova; David F. Choy; Preeti Lal; Joseph R. Arron; Jeffrey M. Harris; William W. Busse

RATIONALE For many patients with asthma, allergic airway inflammation is primarily a Th2-weighted process; however, heterogeneity in patterns of inflammation suggests phenotypic distinctions exist that influence disease presentation and treatment effects. OBJECTIVES To assess the potential of fractional exhaled nitric oxide (FE(NO)), peripheral blood eosinophil count, and serum periostin as biomarkers of Th2 inflammation and predictors of treatment effects of omalizumab. METHODS The EXTRA omalizumab study enrolled patients (aged 12-75 yr) with uncontrolled severe persistent allergic asthma. Analyses were performed evaluating treatment effects in relation to FE(NO), blood eosinophils, and serum periostin at baseline. Patients were divided into low- and high-biomarker subgroups. Treatment effects were evaluated as number of protocol-defined asthma exacerbations during the 48-week treatment period (primary endpoint). MEASUREMENTS AND MAIN RESULTS A total of 850 patients were enrolled. Data were available from 394 (46.4%), 797 (93.8%), and 534 (62.8%) patients for FE(NO), blood eosinophils, and serum periostin, respectively. After 48 weeks of omalizumab, reductions in protocol-defined exacerbations were greater in high versus low subgroups for all three biomarkers: FE(NO), 53% (95% confidence interval [CI], 37-70; P = 0.001) versus 16% (95% CI, -32 to 46; P = 0.45); eosinophils, 32% (95% CI, 11-48; P = 0.005) versus 9% (95% CI, -24 to 34; P = 0.54); and periostin, 30% (95% CI, -2 to 51; P = 0.07) versus 3% (95% CI, -43 to 32; P = 0.94). CONCLUSIONS The difference in exacerbation frequency between omalizumab and placebo was greatest in the three high-biomarker subgroups, probably associated with the greater risk for exacerbations in high subgroups. Additional studies are required to explore the value of these biomarkers in clinical practice. Clinical trial registered with www.clinicaltrials.gov (NCT00314574).


Molecular Therapy | 2008

Ranibizumab for macular edema due to retinal vein occlusions: implication of VEGF as a critical stimulator.

Peter A. Campochiaro; Gulnar Hafiz; Syed Mahmood Shah; Quan Dong Nguyen; Howard S. Ying; Diana V. Do; Edward Quinlan; Ingrid Zimmer-Galler; Julia A. Haller; Sharon D. Solomon; Jennifer U. Sung; Yasmin Hadi; Kashif Janjua; Nida Jawed; David F. Choy; Joseph R. Arron

Macular edema is a major cause of vision loss in patients with central retinal vein occlusion (CRVO) or branch retinal vein occlusion (BRVO). It is not clear how much of the edema is due to hydrodynamic changes from the obstruction and how much is due to chemical mediators. Patients with macular edema due to CRVO (n = 20) or BRVO (n = 20) were randomized to receive three monthly injections of 0.3 or 0.5 mg of ranibizumab. At the primary endpoint, month 3, the median improvement in letters read at 4 m was 17 in the 0.3-mg group and 14 in the 0.5-mg group for CRVO, and 10 and 18, respectively for the BRVO group. Optical coherence tomography (OCT) showed that compared to injections of 0.3 mg, injections of 0.5 mg of ranibizumab tended to cause more rapid reductions of central retinal thickening that lasted longer between injections, but in 3 months, excess central retinal thickening which is a quantitative assessment of the macular edema, was reduced by approximately 90% in all four treatment groups. There was no correlation between the amount of improvement and duration of disease or patient age at baseline, but there was some correlation between the aqueous vascular endothelial growth factor (VEGF) level at baseline and amount of improvement. These data indicate that excess production of VEGF in the retinas of patients with CRVO or BRVO is a major contributor to macular edema and suggest that additional studies investigating the efficacy of intraocular injections of ranibizumab are needed.


The Journal of Allergy and Clinical Immunology | 2012

Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma.

Aarti Shikotra; David F. Choy; Chandra M. Ohri; Emma Doran; Claire A. Butler; Beverley Hargadon; Maria Shelley; Alexander R. Abbas; Cary D. Austin; Janet Jackman; Lawren C. Wu; Liam Heaney; Joseph R. Arron; Peter Bradding

BACKGROUND Thymic stromal lymphopoietin (TSLP) is a cytokine implicated in the pathophysiology of asthma through 2 distinct pathways: a TSLP-OX40 ligand (OX40L)-T cell axis and a TSLP-mast cell axis. Whether these pathways are active in human asthma is unknown. OBJECTIVE We sought to investigate whether mucosal TSLP protein expression relates to asthma severity and distinct immunologic pathways. METHODS In healthy subjects and patients with mild-to-severe asthma, we immunostained bronchial biopsy specimens for TSLP, OX40, OX40L, T(H)2 cytokines, and inflammatory cell markers. We examined gene expression using RNA microarrays and quantitative RT-PCR. RESULTS There was considerable heterogeneity in the levels of TSLP, IL-13, and IL-4 immunostaining across the cohort of asthmatic patients examined. Overall, TSLP protein expression was significantly increased in airway epithelium and lamina propria of asthmatic patients, particularly in patients with severe asthma. TSLP immunostaining in both compartments correlated with the severity of airflow obstruction. The majority of leukocytes expressing IL-13 were possibly nuocytes. Accounting for intersubject variability, the 55% of asthmatic patients with increased IL-13 immunostaining in the lamina propria also had increased IL-4 and TSLP expression. This was further substantiated by significant correlations between TSLP gene expression, a T(H)2 gene expression signature, and eosinophilic inflammation in bronchial biopsy specimens. Immunostaining for OX40, OX40L, and CD83 was sparse, with no difference between asthmatic patients and healthy subjects. CONCLUSION TSLP expression is increased in a subset of patients with severe asthma in spite of high-dose inhaled or oral corticosteroid therapy. Targeting TSLP might only be efficacious in the subset of asthma characterized by increased TSLP expression and T(H)2 inflammation.


Science Translational Medicine | 2015

TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma

David F. Choy; Kevin M. Hart; Lee A. Borthwick; Aarti Shikotra; Deepti R. Nagarkar; Salman Siddiqui; Guiquan Jia; Chandra M. Ohri; Emma Doran; Kevin M. Vannella; Claire A. Butler; Beverley Hargadon; Joshua Sciurba; Richard L. Gieseck; Robert W. Thompson; Sandra White; Alexander R. Abbas; Janet Jackman; Lawren C. Wu; Jackson G. Egen; Liam Heaney; Thirumalai R. Ramalingam; Joseph R. Arron; Thomas A. Wynn; Peter Bradding

Concurrent blockade of IL-13 and IL-17A may improve control of asthma. A tale of two asthmas Classifying diseases according to symptoms is rapidly becoming a thing of the past. Targeted therapeutics have shown us that sets of symptoms can be caused by different pathogenic mechanisms. Now, Choy et al. demonstrate that asthma can be divided into three immunological clusters: TH2-high, TH17-high, and TH2/17-low. The TH2-high and TH17-high clusters were inversely correlated in patients. Moreover, neutralizing one signature promoted the other in a mouse model of asthma. These data suggest that combination therapies targeting both pathways may better treat asthmatic individuals. Increasing evidence suggests that asthma is a heterogeneous disorder regulated by distinct molecular mechanisms. In a cross-sectional study of asthmatics of varying severity (n = 51), endobronchial tissue gene expression analysis revealed three major patient clusters: TH2-high, TH17-high, and TH2/17-low. TH2-high and TH17-high patterns were mutually exclusive in individual patient samples, and their gene signatures were inversely correlated and differentially regulated by interleukin-13 (IL-13) and IL-17A. To understand this dichotomous pattern of T helper 2 (TH2) and TH17 signatures, we investigated the potential of type 2 cytokine suppression in promoting TH17 responses in a preclinical model of allergen-induced asthma. Neutralization of IL-4 and/or IL-13 resulted in increased TH17 cells and neutrophilic inflammation in the lung. However, neutralization of IL-13 and IL-17 protected mice from eosinophilia, mucus hyperplasia, and airway hyperreactivity and abolished the neutrophilic inflammation, suggesting that combination therapies targeting both pathways may maximize therapeutic efficacy across a patient population comprising both TH2 and TH17 endotypes.


Journal of Immunology | 2011

Gene Expression Patterns of Th2 Inflammation and Intercellular Communication in Asthmatic Airways

David F. Choy; Barmak Modrek; Alexander R. Abbas; Sarah K. Kummerfeld; Hilary Clark; Lawren C. Wu; Grazyna Fedorowicz; Zora Modrusan; John V. Fahy; Prescott G. Woodruff; Joseph R. Arron

Asthma is canonically thought of as a disorder of excessive Th2-driven inflammation in the airway, although recent studies have described heterogeneity with respect to asthma pathophysiology. We have previously described distinct phenotypes of asthma based on the presence or absence of a three-gene “Th2 signature” in bronchial epithelium, which differ in terms of eosinophilic inflammation, mucin composition, subepithelial fibrosis, and corticosteroid responsiveness. In the present analysis, we sought to describe Th2 inflammation in human asthmatic airways quantitatively with respect to known mediators of inflammation and intercellular communication. Using whole-genome microarray and quantitative real-time PCR analysis of endobronchial biopsies from 27 mild-to-moderate asthmatics and 13 healthy controls with associated clinical and demographic data, we found that asthmatic Th2 inflammation is expressed over a variable continuum, correlating significantly with local and systemic measures of allergy and eosinophilia. We evaluated a composite metric describing 79 coexpressed genes associated with Th2 inflammation against the biological space comprising cytokines, chemokines, and growth factors, identifying distinctive patterns of inflammatory mediators as well as Wnt, TGF-β, and platelet-derived growth factor family members. This integrated description of the factors regulating inflammation, cell migration, and tissue remodeling in asthmatic airways has important consequences for the pathophysiological and clinical impacts of emerging asthma therapeutics targeting Th2 inflammation.


Arthritis Research & Therapy | 2014

Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics.

Glynn Dennis; Cecile Holweg; Sarah K. Kummerfeld; David F. Choy; Alvernia Francesca Setiadi; Jason A. Hackney; Peter M. Haverty; Houston Gilbert; Wei Y. Lin; Lauri Diehl; Saloumeh Kadkhodayan Fischer; An Song; David Musselman; Micki Klearman; Cem Gabay; Arthur Kavanaugh; Judith Endres; David A. Fox; Flavius Martin; Michael J. Townsend

IntroductionRheumatoid arthritis (RA) is a complex and clinically heterogeneous autoimmune disease. Currently, the relationship between pathogenic molecular drivers of disease in RA and therapeutic response is poorly understood.MethodsWe analyzed synovial tissue samples from two RA cohorts of 49 and 20 patients using a combination of global gene expression, histologic and cellular analyses, and analysis of gene expression data from two further publicly available RA cohorts. To identify candidate serum biomarkers that correspond to differential synovial biology and clinical response to targeted therapies, we performed pre-treatment biomarker analysis compared with therapeutic outcome at week 24 in serum samples from 198 patients from the ADACTA (ADalimumab ACTemrA) phase 4 trial of tocilizumab (anti-IL-6R) monotherapy versus adalimumab (anti-TNFα) monotherapy.ResultsWe documented evidence for four major phenotypes of RA synovium – lymphoid, myeloid, low inflammatory, and fibroid - each with distinct underlying gene expression signatures. We observed that baseline synovial myeloid, but not lymphoid, gene signature expression was higher in patients with good compared with poor European league against rheumatism (EULAR) clinical response to anti-TNFα therapy at week 16 (P =0.011). We observed that high baseline serum soluble intercellular adhesion molecule 1 (sICAM1), associated with the myeloid phenotype, and high serum C-X-C motif chemokine 13 (CXCL13), associated with the lymphoid phenotype, had differential relationships with clinical response to anti-TNFα compared with anti-IL6R treatment. sICAM1-high/CXCL13-low patients showed the highest week 24 American College of Rheumatology (ACR) 50 response rate to anti-TNFα treatment as compared with sICAM1-low/CXCL13-high patients (42% versus 13%, respectively, P =0.05) while anti-IL-6R patients showed the opposite relationship with these biomarker subgroups (ACR50 20% versus 69%, P =0.004).ConclusionsThese data demonstrate that underlying molecular and cellular heterogeneity in RA impacts clinical outcome to therapies targeting different biological pathways, with patients with the myeloid phenotype exhibiting the most robust response to anti-TNFα. These data suggest a path to identify and validate serum biomarkers that predict response to targeted therapies in rheumatoid arthritis and possibly other autoimmune diseases.Trial registrationClinicalTrials.gov NCT01119859


The Journal of Allergy and Clinical Immunology | 2015

The airway microbiome in patients with severe asthma: Associations with disease features and severity

Yvonne J. Huang; Snehal Nariya; Jeffrey M. Harris; Susan V. Lynch; David F. Choy; Joseph R. Arron; Homer A. Boushey

BACKGROUND Asthma is heterogeneous, and airway dysbiosis is associated with clinical features in patients with mild-to-moderate asthma. Whether similar relationships exist among patients with severe asthma is unknown. OBJECTIVE We sought to evaluate relationships between the bronchial microbiome and features of severe asthma. METHODS Bronchial brushings from 40 participants in the Bronchoscopic Exploratory Research Study of Biomarkers in Corticosteroid-refractory Asthma (BOBCAT) study were evaluated by using 16S ribosomal RNA-based methods. Relationships to clinical and inflammatory features were analyzed among microbiome-profiled subjects. Secondarily, bacterial compositional profiles were compared between patients with severe asthma and previously studied healthy control subjects (n = 7) and patients with mild-to-moderate asthma (n = 41). RESULTS In patients with severe asthma, bronchial bacterial composition was associated with several disease-related features, including body mass index (P < .05, Bray-Curtis distance-based permutational multivariate analysis of variance; PERMANOVA), changes in Asthma Control Questionnaire (ACQ) scores (P < .01), sputum total leukocyte values (P = .06), and bronchial biopsy eosinophil values (per square millimeter, P = .07). Bacterial communities associated with worsening ACQ scores and sputum total leukocyte values (predominantly Proteobacteria) differed markedly from those associated with body mass index (Bacteroidetes/Firmicutes). In contrast, improving/stable ACQ scores and bronchial epithelial gene expression of FK506 binding protein (FKBP5), an indicator of steroid responsiveness, correlated with Actinobacteria. Mostly negative correlations were observed between biopsy eosinophil values and Proteobacteria. No taxa were associated with a TH2-related epithelial gene expression signature, but expression of TH17-related genes was associated with Proteobacteria. Patients with severe asthma compared with healthy control subjects or patients with mild-to-moderate asthma were significantly enriched in Actinobacteria, although the largest differences observed involved a Klebsiella genus member (7.8-fold increase in patients with severe asthma, adjusted P < .001). CONCLUSIONS Specific microbiota are associated with and may modulate inflammatory processes in patients with severe asthma and related phenotypes. Airway dysbiosis in patients with severe asthma appears to differ from that observed in those with milder asthma in the setting of inhaled corticosteroid use.


Nature Immunology | 2014

A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production

Laura J. Simpson; Sana Patel; Nirav R. Bhakta; David F. Choy; Hans Brightbill; Xin Ren; Yanli Wang; Heather H. Pua; Dirk Baumjohann; Misty M. Montoya; Marisella Panduro; Kelly A Remedios; Xiaozhu Huang; John V. Fahy; Joseph R. Arron; Prescott G. Woodruff; K. Mark Ansel

MicroRNAs (miRNAs) exert powerful effects on immunological function by tuning networks of target genes that orchestrate cell activity. We sought to identify miRNAs and miRNA-regulated pathways that control the type 2 helper T cell (TH2 cell) responses that drive pathogenic inflammation in asthma. Profiling miRNA expression in human airway-infiltrating T cells revealed elevated expression of the miRNA miR-19a in asthma. Modulating miR-19 activity altered TH2 cytokine production in both human and mouse T cells, and TH2 cell responses were markedly impaired in cells lacking the entire miR-17∼92 cluster. miR-19 promoted TH2 cytokine production and amplified inflammatory signaling by direct targeting of the inositol phosphatase PTEN, the signaling inhibitor SOCS1 and the deubiquitinase A20. Thus, upregulation of miR-19a in asthma may be an indicator and a cause of increased TH2 cytokine production in the airways.


The Journal of Allergy and Clinical Immunology | 2015

Asthma and lower airway diseaseThe airway microbiome in patients with severe asthma: Associations with disease features and severity

Yvonne J. Huang; Snehal Nariya; Jeffrey M. Harris; Susan V. Lynch; David F. Choy; Joseph R. Arron; Homer A. Boushey

BACKGROUND Asthma is heterogeneous, and airway dysbiosis is associated with clinical features in patients with mild-to-moderate asthma. Whether similar relationships exist among patients with severe asthma is unknown. OBJECTIVE We sought to evaluate relationships between the bronchial microbiome and features of severe asthma. METHODS Bronchial brushings from 40 participants in the Bronchoscopic Exploratory Research Study of Biomarkers in Corticosteroid-refractory Asthma (BOBCAT) study were evaluated by using 16S ribosomal RNA-based methods. Relationships to clinical and inflammatory features were analyzed among microbiome-profiled subjects. Secondarily, bacterial compositional profiles were compared between patients with severe asthma and previously studied healthy control subjects (n = 7) and patients with mild-to-moderate asthma (n = 41). RESULTS In patients with severe asthma, bronchial bacterial composition was associated with several disease-related features, including body mass index (P < .05, Bray-Curtis distance-based permutational multivariate analysis of variance; PERMANOVA), changes in Asthma Control Questionnaire (ACQ) scores (P < .01), sputum total leukocyte values (P = .06), and bronchial biopsy eosinophil values (per square millimeter, P = .07). Bacterial communities associated with worsening ACQ scores and sputum total leukocyte values (predominantly Proteobacteria) differed markedly from those associated with body mass index (Bacteroidetes/Firmicutes). In contrast, improving/stable ACQ scores and bronchial epithelial gene expression of FK506 binding protein (FKBP5), an indicator of steroid responsiveness, correlated with Actinobacteria. Mostly negative correlations were observed between biopsy eosinophil values and Proteobacteria. No taxa were associated with a TH2-related epithelial gene expression signature, but expression of TH17-related genes was associated with Proteobacteria. Patients with severe asthma compared with healthy control subjects or patients with mild-to-moderate asthma were significantly enriched in Actinobacteria, although the largest differences observed involved a Klebsiella genus member (7.8-fold increase in patients with severe asthma, adjusted P < .001). CONCLUSIONS Specific microbiota are associated with and may modulate inflammatory processes in patients with severe asthma and related phenotypes. Airway dysbiosis in patients with severe asthma appears to differ from that observed in those with milder asthma in the setting of inhaled corticosteroid use.


Clinical & Experimental Allergy | 2014

The effects of lebrikizumab in patients with mild asthma following whole lung allergen challenge.

Heleen Scheerens; Joseph R. Arron; Yanan Zheng; Wendy S. Putnam; Richard W. Erickson; David F. Choy; Jeffrey M. Harris; June H. Lee; Nizar N. Jarjour; John G. Matthews

Interleukin 13 (IL13) is a T‐helper type 2 (Th2) cytokine associated with inflammation and pathology in allergic diseases such as bronchial asthma. We have shown that treatment with lebrikizumab, an anti‐IL13 monoclonal antibody, significantly improves prebronchodilator forced expiratory volume in 1 s (FEV1) in a subset of subjects with uncontrolled asthma.

Collaboration


Dive into the David F. Choy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liam Heaney

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire A. Butler

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma Doran

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge