Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cécile Julien is active.

Publication


Featured researches published by Cécile Julien.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Chronic intermittent hypoxia reduces ventilatory long-term facilitation and enhances apnea frequency in newborn rats

Cécile Julien; Aida Bairam; Vincent Joseph

Ventilatory long-term facilitation (LTF; defined as gradual increase of minute ventilation following repeated hypoxic exposures) is well described in adult mammals and is hypothesized to be a protective mechanism against apnea. In newborns, LTF is absent during the first postnatal days, but its precise developmental pattern is unknown. Accordingly, this study describes this pattern of postnatal development. Additionally, we tested the hypothesis that chronic intermittent hypoxia (CIH) from birth alters this development. LTF was estimated in vivo using whole body plethysmography by exposing rat pups at postnatal days 1, 4, and 10 (P1, P4, and P10) to 10 brief hypoxic cycles (nadir 5% O2) and respiratory recordings during the following 2 h (recovery, 21% O2). Under these conditions, ventilatory LTF (gradual increase of minute ventilation during recovery) was clearly expressed in P10 rats but not in P1 and P4. In a second series of experiments, rat pups were exposed to CIH during the first 10 postnatal days (6 brief cyclic exposures at 5% O2 every 6 min followed by 1 h under normoxia, 24 h a day). Compared with P10 control rats, CIH enhanced hypoxic ventilatory response (estimated during the hypoxic cycles) specifically in male rat pups. Ventilatory LTF was drastically reduced in P10 rats exposed to CIH, which was associated with higher apnea frequency during recovery. We conclude that CIH from birth enhances hypoxic chemoreflex and disrupts LTF development, thus likely contributing to increase apnea frequency.


Pediatric Research | 2010

Caffeine Reduces Apnea Frequency and Enhances Ventilatory Long-Term Facilitation in Rat Pups Raised in Chronic Intermittent Hypoxia

Cécile Julien; Vincent Joseph; Aida Bairam

The mechanisms underlying the therapeutic function of caffeine on apneas in preterm neonates are not well determined. To better understand these effects, we exposed rat pups from postnatal d 3–12 to chronic intermittent hypoxia (5% O2/100 s every 10 min; 6 cycles/h followed by 1 h at 21% O2, 24 h/d), a model mimicking hypoxemic exposure in apneic neonates. Then, using whole-body plethysmography, we evaluated minute ventilation, apnea frequency, and duration after i.p injection of caffeine citrate (20 mg/kg) or saline under normoxia and in response to either sustained (FiO2 12%, 20 min) or brief (FiO2 5%, 60 s, total 10 episodes of 8 min each) hypoxia. These tests were used to assess peripheral and central components of hypoxic response. The latter also assessed the ventilatory long-term facilitation during recovery (2 h). Caffeine injection increased minute ventilation under baseline and during recovery. This effect was correlated with a decrease in apnea frequency (not duration). On the contrary, caffeine did not change the ventilatory response to sustained or brief hypoxic exposure. These results suggest that the effects of caffeine on apnea depend on increased central normoxic respiratory drive and enhancement of ventilatory long-term facilitation rather than on higher hypoxic ventilatory response.


Respiratory Physiology & Neurobiology | 2011

Alteration of carotid body chemoreflexes after neonatal intermittent hypoxia and caffeine treatment in rat pups

Cécile Julien; Vincent Joseph; Aida Bairam

In human neonates, caffeine therapy for apnoea of prematurity, especially when associated with hypoxemia, is maintained for several weeks after birth. In the present study, we used newborn rats and whole-body plethysmography to test whether chronic exposure to neonatal caffeine treatment (NCT), alone or combined with neonatal intermittent hypoxia (n-IH) alters: (1) baseline ventilation and response to hypoxia (12% O(2), 20 min); and (2) response to acute i.p. injection of caffeine citrate (20 mg/kg) or domperidone, a peripheral dopamine D2 receptor antagonist (1 mg/kg). Four groups of rats were studied as follows: raised under normal conditions with daily gavage with water (NWT) or NCT, or exposed to n-IH (n-IH+NWT and n-IH+NCT) from postnatal days 3 to 12. In n-IH+NCT rats, baseline ventilation was higher than in the other groups. Caffeine or domperidone enhanced baseline ventilation only in NWT and n-IH+NWT rats, but neither caffeine nor domperidone affected the hypoxic ventilatory response in these groups. In n-IH+NWT rats, the response during the early phase of hypoxia (<10 min) was higher than in other groups. During the late response phase to hypoxia (20 min), ventilation was lower in n-IH+NWT and n-IH+NCT rats compared to NWT or NCT, and were not affected by caffeine or domperidone injection. NCT or caffeine injection decreased baseline apnoea frequency in all groups. These data suggest that chronic exposure to NCT alters both carotid body dopaminergic and adenosinergic systems and central regulation of breathing under baseline conditions and in response to hypoxia.


The Journal of Neuroscience | 2013

Gestational Stress Promotes Pathological Apneas and Sex-Specific Disruption of Respiratory Control Development in Newborn Rat

Stéphanie Fournier; Steele S; Cécile Julien; Roumiana Gulemetova; Céline Caravagna; Soliz J; Aida Bairam; Richard Kinkead

Recurrent apneas are important causes of hospitalization and morbidity in newborns. Gestational stress (GS) compromises fetal brain development. Maternal stress and anxiety during gestation are linked to respiratory disorders in newborns; however, the mechanisms remain unknown. Here, we tested the hypothesis that repeated activation of the neuroendocrine response to stress during gestation is sufficient to disrupt the development of respiratory control and augment the occurrence of apneas in newborn rats. Pregnant dams were displaced and exposed to predator odor from days 9 to 19 of gestation. Control dams were undisturbed. Experiments were performed on male and female rats aged between 0 and 4 d old. Apnea frequency decreased with age but was consistently higher in stressed pups than controls. At day 4, GS augmented the proportion of apneas with O2 desaturations by 12%. During acute hypoxia (12% O2), the reflexive increase in breathing augmented with age; however, this response was lower in stressed pups. Instability of respiratory rhythm recorded from medullary preparations decreased with age but was higher in stressed pups than controls. GS reduced medullary serotonin (5-HT) levels in newborn pups by 32%. Bath application of 5-HT and injection of 8-OH-DPAT [(±)-8-hydroxy-2-di-(n-propylamino) tetralin hydrobromide; 5-HT1A agonist; in vivo] reduced respiratory instability and apneas; these effects were greater in stressed pups than controls. Sex-specific effects were observed. We conclude that activation of the stress response during gestation is sufficient to disrupt respiratory control development and promote pathological apneas in newborn rats. A deficit in medullary 5-HT contributes to these effects.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Carotid sinus nerve stimulation, but not intermittent hypoxia, induces respiratory LTF in adult rats exposed to neonatal intermittent hypoxia

Cécile Julien; Lalah Niane; Richard Kinkead; Aida Bairam; Vincent Joseph

We tested the hypothesis that exposure to neonatal intermittent hypoxia (n-IH) in rat pups alters central integrative processes following acute and intermittent peripheral chemoreceptor activation in adults. Newborn male rats were exposed to n-IH or normoxia for 10 consecutive days after birth. We then used both awake and anesthetized 3- to 4-mo-old rats to record ventilation, blood pressure, and phrenic and splanchnic nerve activities to assess responses to peripheral chemoreflex activation (acute hypoxic response) and long-term facilitation (LTF, long-term response after intermittent hypoxia). In anesthetized rats, phrenic and splanchnic nerve activities and hypoxic responses were also recorded with or without intact carotid body afferent signal (bilateral chemodenervation) or in response to electrical stimulations of the carotid sinus nerve. In awake rats, n-IH alters the respiratory pattern (higher frequency and lower tidal volume) and increased arterial blood pressure in normoxia, but the ventilatory response to repeated hypoxic cycles was not altered. In anesthetized rats, phrenic nerve responses to repeated hypoxic cycles or carotid sinus nerve stimulation were not altered by n-IH; however, the splanchnic nerve response was suppressed by n-IH compared with control. In control rats, respiratory LTF was apparent in anesthetized but not in awake animals. In n-IH rats, respiratory LTF was not apparent in awake and anesthetized animals. Following intermittent electrical stimulation, however, phrenic LTF was clearly present in n-IH rats, being similar in magnitude to controls. We conclude that, in adult n-IH rats: 1) arterial blood pressure is elevated, 2) peripheral chemoreceptor responses to hypoxia and its central integration are not altered, but splanchnic nerve response is suppressed, 3) LTF is suppressed, and 4) the mechanisms involved in the generation of LTF are still present but are masked most probably as the result of an augmented inhibitory response to hypoxia in the central nervous system.


Advances in Experimental Medicine and Biology | 2012

Dose dependent effect of progesterone on hypoxic ventilatory response in newborn rats.

Oubeidallah Hichri; Jean-C Laurin; Cécile Julien; Vincent Joseph; Aida Bairam

The effect of progesterone as a respiratory stimulant in newborn subjects is less known than that in adults. This study investigated the dose-response curve (0, 2, 4, and 8 mg/kg, ip) of progesterone on ventilation in non-anesthetized newborn rats at 4- and 12-days old using plethysmography. Progesterone had no effects in the regulation of normoxic ventilation. However, it enhanced the response to moderate hypoxia (FiO(2) 12%, 20 min) in 4- but not in 12-days old pups. This response was similar between the dose of 4 and 8 mg/kg. These observations suggested that progesterone enhances in age- and dose-dependent manner the hypoxic ventilatory response in newborn rats.


Advances in Experimental Medicine and Biology | 2012

Neonatal Intermittent Hypoxia Induces Persistent Alteration of Baroreflex in Adult Male Rats

Cécile Julien; Richard Kinkead; Vincent Joseph; Aida Bairam

Baroreflex is involved in the regulation of arterial blood pressure (BP). An increase in BP activates vagal inhibitory pathways to decrease heart rate; a concomitant decrease in sympathetic discharge reduces vascular resistance. Both responses reduce BP towards normal value. Conversely, a decrease in BP produces opposite effects to increase heart rate and vascular resistance.


Archive | 2015

apneapossible relevance for periodic breathing and

Akram Khan; Mansour Qurashi; Kim Kwiatkowski; Don Cates; Cécile Julien; Aida Bairam; Vincent Joseph


Archive | 2015

transgenic newborn mice lacking the tachykinin-1 Altered respiratory pattern and hypoxic response in

Cécile Julien; Aida Bairam; Vincent Joseph; Veronica Siljehav; Yuri Shvarev; Eric Herlenius


Archive | 2015

responses to hypoxia of adult male rats ventilatory, thermoregulatory, and endocrine Influence of juvenile housing conditions on the

Sébastien Fournier; Vincent Joseph; Richard Kinkead; Céline Caravagna; Jorge Soliz; Aida Bairam; Stéphanie Fournier; Shelby Steele; Cécile Julien; Roumiana Gulemetova; Cécile Baldy

Collaboration


Dive into the Cécile Julien's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Don Cates

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge