Stéphanie Fournier
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stéphanie Fournier.
The Journal of Experimental Biology | 2007
Stéphanie Fournier; Mathieu Allard; Stéphanie Roussin; Richard Kinkead
SUMMARY The in vitro brainstem preparation from Rana catesbeiana shows a functional central O2 chemoreflex. Acute brainstem exposure to hypoxic superfusate elicits lung burst frequency responses that change over the course of development. Based on studies suggesting that brainstem noradrenergic neurons are involved in this reflex, we tested the following two hypotheses in vitro: (1) activation of adrenoceptors is necessary for the expression of the fictive lung ventilation response to hypoxia, and (2) changes in fast, Cl–-dependent neurotransmission (GABA/glycine) contribute to developmental changes in noradrenergic modulation. Experiments were performed on preparations from pre-metamorphics tadpoles (TK stages V–XIII) and adult bullfrogs. Acute exposure to hypoxic superfusate (98% N2, 2% CO2) increased fictive lung ventilation frequency in the pre-metamorphic group, whereas a decrease was observed in adults. Buccal burst frequency was unchanged by hypoxia. Noradrenaline (NA; 5 μmol l–1) bath application mimicked both fictive breathing responses and application of theα 1-antagonist prazosine (0.5 μmol l–1) blocked the lung burst response to hypoxia in both groups. Blocking GABAA/glycine receptors with a bicuculine/strychnine mixture (1.25μ mol l–1/1.5 μmol l–1, respectively) or activation of GABAB pre-synaptic autoreceptors with baclofen (0.5 μmol l–1) prevented the lung burst response to hypoxia and to the α1-agonist phenylephrine (25 μmol l–1) in both stage groups. We conclude that NA modulation contributes to the central O2 chemoreflex in bullfrog, which acts via GABA/glycine pathways. These data suggest that maturation of GABA/glycine neurotransmission contributes to the developmental changes in this chemoreflex.
The Journal of Neuroscience | 2013
Stéphanie Fournier; Steele S; Cécile Julien; Roumiana Gulemetova; Céline Caravagna; Soliz J; Aida Bairam; Richard Kinkead
Recurrent apneas are important causes of hospitalization and morbidity in newborns. Gestational stress (GS) compromises fetal brain development. Maternal stress and anxiety during gestation are linked to respiratory disorders in newborns; however, the mechanisms remain unknown. Here, we tested the hypothesis that repeated activation of the neuroendocrine response to stress during gestation is sufficient to disrupt the development of respiratory control and augment the occurrence of apneas in newborn rats. Pregnant dams were displaced and exposed to predator odor from days 9 to 19 of gestation. Control dams were undisturbed. Experiments were performed on male and female rats aged between 0 and 4 d old. Apnea frequency decreased with age but was consistently higher in stressed pups than controls. At day 4, GS augmented the proportion of apneas with O2 desaturations by 12%. During acute hypoxia (12% O2), the reflexive increase in breathing augmented with age; however, this response was lower in stressed pups. Instability of respiratory rhythm recorded from medullary preparations decreased with age but was higher in stressed pups than controls. GS reduced medullary serotonin (5-HT) levels in newborn pups by 32%. Bath application of 5-HT and injection of 8-OH-DPAT [(±)-8-hydroxy-2-di-(n-propylamino) tetralin hydrobromide; 5-HT1A agonist; in vivo] reduced respiratory instability and apneas; these effects were greater in stressed pups than controls. Sex-specific effects were observed. We conclude that activation of the stress response during gestation is sufficient to disrupt respiratory control development and promote pathological apneas in newborn rats. A deficit in medullary 5-HT contributes to these effects.
The Journal of Experimental Biology | 2006
Stéphanie Fournier; Richard Kinkead
SUMMARY Noradrenaline (NA) is an important modulator of respiratory activity. Results from in vitro studies using immature rodents suggest that the effects exerted by NA change during development, but these investigations have been limited to neonatal stages. To address this issue, we used in vitro brainstem preparations of an ectotherm, Rana catesbeiana, at three developmental stages: pre-metamorphic tadpoles, metamorphic tadpoles and fully mature adult bullfrogs. We first compared the effects of NA bath application (0.02-10 μmol l-1) on brainstem preparations from both pre-metamorphic (Taylor-Köllros stages VII-XI) and metamorphic tadpoles (TK stages XVIII-XXIII) and adult frogs. The fictive lung ventilation frequency response to NA application was both dose- and stage-dependent. Although no net change was observed in the pre-metamorphic group, NA application decreased fictive lung burst frequency in preparations from more mature animals. These effects were attenuated by application ofα -adrenoceptor antagonists. Conversely, NA application elicited dose- and stage-dependent increases in fictive buccal ventilation frequency. We then assessed the contribution of α-adrenoceptors towards these responses by applying specific agonists (α1: phenylephrine;α 2: clonidine; concentration range from 10 to 200 μmol l-1 for both). Of the two agonists used, only phenylephrine application consistently mimicked the lung burst frequency response observed during NA application in each stage group. However, both agonists decreased buccal burst frequency, thus suggesting that other (β) adrenoceptor types mediate this response. We conclude that modulation of both buccal and lung-related motor outputs change during development. NA modulation affects both types of respiratory activities in a distinct fashion, owing to the different adrenoceptor type involved.
Physiological and Biochemical Zoology | 2014
Éric Côté; Jean-Philippe Rousseau; Stéphanie Fournier; Richard Kinkead
In vitro brain stem preparations from goldfish (Carassius auratus) were used to first determine whether this species possesses central chemoreceptors able to modulate respiratory activity. Preparations were superfused with an artificial cerebrospinal fluid (aCSF); fictive breathing was recorded extracellularly by placing a suction electrode on cranial nerve VII. Reducing the level of O2 in the gas mixture used to bubble the aCSF from a hyperoxic level (80% or 98.7% O2) to a relative hypoxic level (20% or 40% O2) increased the frequency of the fictive respiratory burst (P = 0.0002). Reducing the pH of the aCSF from 7.9 to 7.4 by increasing CO2 in the superfusate did not affect fictive breathing. Chloride-mediated neurotransmission (GABA/glycine) is a major modulator of respiratory activity; however, its effect on the neural circuits that regulate breathing in teleosts remains unknown. Bath application of GABA (0.5, 5.0 mM) decreased burst frequency but not amplitude; this effect was dose dependent (drug × concentration: P = 0.01). Superfusion of the preparations with aCSF containing 1.25 μM of bicuculline methochloride and 1.50 μM of strychnine hydrochloride (GABAA and glycine receptor antagonists, respectively) increased burst frequency (P = 0.002) and amplitude (P < 0.001). We conclude that respiratory activity produced by the goldfish brain stem is not responsive to the moderate CO2 levels used in this study; it may contain O2 chemoreceptors, but the relatively small response could also reflect nonspecific effects of hypoxia on the central nervous system. Cl−-mediated neurotransmission inhibits fictive breathing; this aspect of respiratory regulation is similar to other groups of vertebrates.
Respiratory Physiology & Neurobiology | 2014
Flavien Delhaes; Stéphanie Fournier; Jean-François Tolsa; Anne-Christine Peyter; Aida Bairam; Richard Kinkead
The GABAergic system modulates respiratory activity and undergoes substantial changes during early life. Because this maturation process is sensitive to stress, we tested the hypothesis that gestational stress (GS) alters development of GABAergic modulation of respiratory control in rat pups. The respiratory responses to the selective GABAA receptor agonist muscimol were compared between pups born to dams subjected to GS (bright light and predator odor; 20 min/day from G9 to G19) or maintained under standard (control) conditions. Respiratory activity was measured on 1 and 4 days old pups of both sexes using in vivo (whole body plethysmography) and in vitro (isolated brainstem-spinal cord preparation) approaches. In intact pups, muscimol injection (0.75 mg/kg; i.p.) depressed minute ventilation; this response was less in GS pups, and at P4, muscimol augmented minute ventilation in GS females. Bath application of muscimol (0.01-0.5 μM) onto brainstem preparations decreased inspiratory (C4) burst frequency and amplitude in a dose-dependent manner; the responsiveness decreased with age. However, GS had limited effects on these results. We conclude that the results obtained in vivo are consistent with our hypothesis and show that GS delays maturation of GABAergic modulation of respiratory activity. The differences in the results observed between experimental approaches (in vivo versus in vitro) indicate that the effect of prenatal stress on maturation of GABAergic modulation of respiratory control mainly affects the peripheral/metabolic components of the respiratory control system.
Respiratory Physiology & Neurobiology | 2016
Jean-Philippe Rousseau; Stéphanie Fournier; Richard Kinkead
Respiratory reflexes and tolerance to hypoxia show significant sexual dimorphism. However, the data supporting this notion originates exclusively from mammals. To determine whether this concept is limited to this group of vertebrates, we examined the sex-specific response to acute hypoxia in an adult reduced brainstem preparation from Xenopus laevis. Within the first 5min of exposure to hypoxic aCSF (98% N2/2% CO2), recordings of respiratory-related activity show a stronger increase in fictive breathing frequency in males than females. This initial response was followed by a decrease in respiratory-related activity; this depression occurred 6min sooner in males than females. These results represent new evidences of sexual dimorphism in respiratory control in amphibians and provide potential insight in understanding the homology with other groups of vertebrates, including mammals.
The Journal of Experimental Biology | 2012
Stéphanie Fournier; Pierre-Luc Dubé; Richard Kinkead
SUMMARY The emergence of air breathing during amphibian metamorphosis requires significant changes to the brainstem circuits that generate and regulate breathing. However, the mechanisms controlling this developmental process are unknown. Because corticosterone plays an important role in the neuroendocrine regulation of amphibian metamorphosis, we tested the hypothesis that corticosterone augments fictive air breathing frequency in Xenopus laevis. To do so, we compared the fictive air breathing frequency produced by in vitro brainstem preparations from pre-metamorphic tadpoles and adult frogs before and after 1 h application of corticosterone (100 nmol l–1). Fictive breathing measurements related to gill and lung ventilation were recorded extracellularly from cranial nerve rootlets V and X. Corticosterone application had no immediate effect on respiratory-related motor output produced by brainstems from either developmental stage. One hour after corticosterone wash out, fictive lung ventilation frequency was increased whereas gill burst frequency was decreased. This effect was stage specific as it was significant only in preparations from tadpoles. GABA application (0.001–0.5 mmol l–1) augmented fictive air breathing in tadpole preparations. However, this effect of GABA was no longer observed following corticosterone treatment. An increase in circulating corticosterone is one of the endocrine processes that orchestrate central nervous system remodelling during metamorphosis. The age-specific effects of corticosterone application indicate that this hormone can act as an important regulator of respiratory control development in Xenopus tadpoles. Concurrent changes in GABAergic neurotransmission probably contribute to this maturation process, leading to the emergence of air breathing in this species.
Experimental Physiology | 2018
Cécile Baldy; Stéphanie Fournier; Samuel Boisjoly‐Villeneuve; Marie-Ève Tremblay; Richard Kinkead
What is the central question of the study? Does neonatal stress, in the form of neonatal maternal separation, influence the maturation of microglial density, morphology and neuronal signalling in medullary regions regulating cardiorespiratory function in rat pups? What is the main finding and its importance? Using Iba‐1 immunohistochemistry, we show that neonatal maternal separation augments microglial density and the proportion of cells with an amoeboid morphology in the medulla. Although the current understanding of the effect of early life stress on medullary development is relatively limited, these data show that within this area, microglia are affected by neonatal stress. Microglia could therefore be important effectors in cardiorespiratory disorders resulting from maternal separation.
eNeuro | 2017
Cécile Baldy; Simon Chamberland; Stéphanie Fournier; Richard Kinkead
Abstract The presence of liquid near the larynx of immature mammals triggers prolonged apneas with significant O2 desaturations and bradycardias. When excessive, this reflex (the laryngeal chemoreflex; LCR) can be fatal. Our understanding of the origins of abnormal LCR are limited; however, perinatal stress and male sex are risk factors for cardio-respiratory failure in infants. Because exposure to stress during early life has deleterious and sex-specific consequences on brain development it is plausible that respiratory reflexes are vulnerable to neuroendocrine dysfunction. To address this issue, we tested the hypothesis that neonatal maternal separation (NMS) is sufficient to exacerbate LCR-induced cardio-respiratory inhibition in anesthetized rat pups. Stressed pups were separated from their mother 3 h/d from postnatal days 3 to 12. At P14–P15, pups were instrumented to monitor breathing, O2 saturation (Spo2), and heart rate. The LCR was activated by water injections near the larynx (10 µl). LCR-induced apneas were longer in stressed pups than controls; O2 desaturations and bradycardias were more profound, especially in males. NMS increased the frequency and amplitude of spontaneous EPSCs (sEPSCs) in the dorsal motor nucleus of the vagus (DMNV) of males but not females. The positive relationship between corticosterone and testosterone observed in stressed pups (males only) suggests that disruption of neuroendocrine function by stress is key to sex-based differences in abnormal LCR. Because testosterone application onto medullary slices augments EPSC amplitude only in males, we propose that testosterone-mediated enhancement of synaptic connectivity within the DMNV contributes to the male bias in cardio-respiratory inhibition following LCR activation in stressed pups.
The Journal of Experimental Biology | 2017
Kim Landry-Truchon; Stéphanie Fournier; Nicolas Houde; Jean-Philippe Rousseau; Lucie Jeannotte; Richard Kinkead
ABSTRACT Fetal development of the respiratory tract and diaphragm requires strict coordination between genetically controlled signals and mechanical forces produced by the neural network that generates breathing. HOXA5, which is expressed in the mesenchyme of the trachea, lung and diaphragm, and in phrenic motor neurons, is a key transcription factor regulating lung development and function. Consequently, most Hoxa5−/− mutants die at birth from respiratory failure. However, the extensive effect of the null mutation makes it difficult to identify the origins of respiratory dysfunction in newborns. To address the physiological impact of Hoxa5 tissue-specific roles, we used conditional gene targeting with the Dermo1Cre and Olig2Cre mouse lines to produce specific Hoxa5 deletions in the mesenchyme and motor neurons, respectively. Hoxa5 expression in the mesenchyme is critical for trachea development, whereas its expression in phrenic motor neurons is essential for diaphragm formation. Breathing measurements in adult mice with whole-body plethysmography demonstrated that, at rest, only the motor neuron deletion affects respiration, resulting in higher breathing frequency and decreased tidal volume. But subsequent exposure to a moderate hypoxic challenge (FiO2=0.12; 10 min) revealed that both mutant mice hyperventilate more than controls. Hoxa5flox/flox;Dermo1+/Cre mice showed augmented tidal volume while Hoxa5flox/flox;Olig2+/Cre mice had the largest increase in breathing frequency. No significant differences were observed between medulla–spinal cord preparations from E18.5 control and Hoxa5flox/flox;Olig2+/Cre mouse embryos that could support a role for Hoxa5 in fetal inspiratory motor command. According to our data, Hoxa5 expression in the mesenchyme and phrenic motor neurons controls distinct aspects of respiratory development. Summary: HOXA5 is a transcription factor broadly expressed in the respiratory system; Hoxa5 expression in the mesenchyme and phrenic motor neurons controls distinct aspects of respiratory development.