Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecilia Hegardt is active.

Publication


Featured researches published by Cecilia Hegardt.


Breast Cancer Research | 2008

The CD44+/CD24- phenotype is enriched in basal-like breast tumors

Gabriella Honeth; Pär-Ola Bendahl; Markus Ringnér; Lao H. Saal; Sofia K. Gruvberger-Saal; Kristina Lövgren; Dorthe Grabau; Mårten Fernö; Åke Borg; Cecilia Hegardt

IntroductionHuman breast tumors are heterogeneous and consist of phenotypically diverse cells. Breast cancer cells with a CD44+/CD24- phenotype have been suggested to have tumor-initiating properties with stem cell-like and invasive features, although it is unclear whether their presence within a tumor has clinical implications. There is also a large heterogeneity between tumors, illustrated by reproducible stratification into various subtypes based on gene expression profiles or histopathological features. We have explored the prevalence of cells with different CD44/CD24 phenotypes within breast cancer subtypes.MethodsDouble-staining immunohistochemistry was used to quantify CD44 and CD24 expression in 240 human breast tumors for which information on other tumor markers and clinical characteristics was available. Gene expression data were also accessible for a cohort of the material.ResultsA considerable heterogeneity in CD44 and CD24 expression was seen both between and within tumors. A complete lack of both proteins was evident in 35% of the tumors, while 13% contained cells of more than one of the CD44+/CD24-, CD44-/CD24+ and CD44+/CD24+ phenotypes. CD44+/CD24- cells were detected in 31% of the tumors, ranging in proportion from only a few to close to 100% of tumor cells. The CD44+/CD24- phenotype was most common in the basal-like subgroup – characterized as negative for the estrogen and progesterone receptors as well as for HER2, and as positive for cytokeratin 5/14 and/or epidermal growth factor receptor, and particularly common in BRCA1 hereditary tumors, of which 94% contained CD44+/CD24- cells. The CD44+/CD24- phenotype was surprisingly scarce in HER2+ tumors, which had a predominantly CD24+ status. A CD44+/CD24- gene expression signature was generated, which included CD44 and α6-integrin (CD49f) among the top-ranked overexpressed genes.ConclusionWe demonstrate an association between basal-like and particularly BRCA1 hereditary breast cancer and the presence of CD44+/CD24- cells. Not all basal-like tumors and very few HER2+ tumors, however, contain CD44+/CD24- cells, emphasizing that a putative tumorigenic ability may not be confined to cells of this phenotype and that other breast cancer stem cell markers remain to be identified.


Breast Cancer Research | 2010

Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns

Karolina Holm; Cecilia Hegardt; Johan Staaf; Johan Vallon-Christersson; Göran Jönsson; Håkan Olsson; Åke Borg; Markus Ringnér

IntroductionFive different molecular subtypes of breast cancer have been identified through gene expression profiling. Each subtype has a characteristic expression pattern suggested to partly depend on cellular origin. We aimed to investigate whether the molecular subtypes also display distinct methylation profiles.MethodsWe analysed methylation status of 807 cancer-related genes in 189 fresh frozen primary breast tumours and four normal breast tissue samples using an array-based methylation assay.ResultsUnsupervised analysis revealed three groups of breast cancer with characteristic methylation patterns. The three groups were associated with the luminal A, luminal B and basal-like molecular subtypes of breast cancer, respectively, whereas cancers of the HER2-enriched and normal-like subtypes were distributed among the three groups. The methylation frequencies were significantly different between subtypes, with luminal B and basal-like tumours being most and least frequently methylated, respectively. Moreover, targets of the polycomb repressor complex in breast cancer and embryonic stem cells were more methylated in luminal B tumours than in other tumours. BRCA2-mutated tumours had a particularly high degree of methylation. Finally, by utilizing gene expression data, we observed that a large fraction of genes reported as having subtype-specific expression patterns might be regulated through methylation.ConclusionsWe have found that breast cancers of the basal-like, luminal A and luminal B molecular subtypes harbour specific methylation profiles. Our results suggest that methylation may play an important role in the development of breast cancers.


Breast Cancer Research | 2010

Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics

Göran Jönsson; Johan Staaf; Johan Vallon-Christersson; Markus Ringnér; Karolina Holm; Cecilia Hegardt; Haukur Gunnarsson; Rainer Fagerholm; Carina Strand; Bjarni A. Agnarsson; Outi Kilpivaara; Lena Luts; Päivi Heikkilä; Kristiina Aittomäki; Carl Blomqvist; Niklas Loman; Per Malmström; Håkan Olsson; Oskar Th Johannsson; Adalgeir Arason; Heli Nevanlinna; Rosa B. Barkardottir; Åke Borg

IntroductionBreast cancer is a profoundly heterogeneous disease with respect to biologic and clinical behavior. Gene-expression profiling has been used to dissect this complexity and to stratify tumors into intrinsic gene-expression subtypes, associated with distinct biology, patient outcome, and genomic alterations. Additionally, breast tumors occurring in individuals with germline BRCA1 or BRCA2 mutations typically fall into distinct subtypes.MethodsWe applied global DNA copy number and gene-expression profiling in 359 breast tumors. All tumors were classified according to intrinsic gene-expression subtypes and included cases from genetically predisposed women. The Genomic Identification of Significant Targets in Cancer (GISTIC) algorithm was used to identify significant DNA copy-number aberrations and genomic subgroups of breast cancer.ResultsWe identified 31 genomic regions that were highly amplified in > 1% of the 359 breast tumors. Several amplicons were found to co-occur, the 8p12 and 11q13.3 regions being the most frequent combination besides amplicons on the same chromosomal arm. Unsupervised hierarchical clustering with 133 significant GISTIC regions revealed six genomic subtypes, termed 17q12, basal-complex, luminal-simple, luminal-complex, amplifier, and mixed subtypes. Four of them had striking similarity to intrinsic gene-expression subtypes and showed associations to conventional tumor biomarkers and clinical outcome. However, luminal A-classified tumors were distributed in two main genomic subtypes, luminal-simple and luminal-complex, the former group having a better prognosis, whereas the latter group included also luminal B and the majority of BRCA2-mutated tumors. The basal-complex subtype displayed extensive genomic homogeneity and harbored the majority of BRCA1-mutated tumors. The 17q12 subtype comprised mostly HER2-amplified and HER2-enriched subtype tumors and had the worst prognosis. The amplifier and mixed subtypes contained tumors from all gene-expression subtypes, the former being enriched for 8p12-amplified cases, whereas the mixed subtype included many tumors with predominantly DNA copy-number losses and poor prognosis.ConclusionsGlobal DNA copy-number analysis integrated with gene-expression data can be used to dissect the complexity of breast cancer. This revealed six genomic subtypes with different clinical behavior and a striking concordance to the intrinsic subtypes. These genomic subtypes may prove useful for understanding the mechanisms of tumor development and for prognostic and treatment prediction purposes.


Clinical Cancer Research | 2007

Estrogen receptor beta expression is associated with tamoxifen response in ER alpha-negative breast carcinoma

Sofia K. Gruvberger-Saal; Pär-Ola Bendahl; Lao H. Saal; Mervi Laakso; Cecilia Hegardt; Patrik Edén; Carsten Peterson; Per Malmström; Jorma Isola; Åke Borg; Mårten Fernö

Purpose: Endocrine therapies, such as tamoxifen, are commonly given to most patients with estrogen receptor (ERα)–positive breast carcinoma but are not indicated for persons with ERα-negative cancer. The factors responsible for response to tamoxifen in 5% to 10% of patients with ERα-negative tumors are not clear. The aim of the present study was to elucidate the biology and prognostic role of the second ER, ERβ, in patients treated with adjuvant tamoxifen. Experimental Design: We investigated ERβ by immunohistochemistry in 353 stage II primary breast tumors from patients treated with 2 years adjuvant tamoxifen, and generated gene expression profiles for a representative subset of 88 tumors. Results: ERβ was associated with increased survival (distant disease-free survival, P = 0.01; overall survival, P = 0.22), and in particular within ERα-negative patients (P = 0.003; P = 0.04), but not in the ERα-positive subgroup (P = 0.49; P = 0.88). Lack of ERβ conferred early relapse (hazard ratio, 14; 95% confidence interval, 1.8-106; P = 0.01) within the ERα-negative subgroup even after adjustment for other markers. ERα was an independent marker only within the ERβ-negative tumors (hazard ratio, 0.44; 95% confidence interval, 0.21-0.89; P = 0.02). An ERβ gene expression profile was identified and was markedly different from the ERα signature. Conclusion: Expression of ERβ is an independent marker for favorable prognosis after adjuvant tamoxifen treatment in ERα-negative breast cancer patients and involves a gene expression program distinct from ERα. These results may be highly clinically significant, because in the United States alone, ∼10,000 women are diagnosed annually with ERα-negative/ERβ-positive breast carcinoma and may benefit from adjuvant tamoxifen.


Journal of Clinical Oncology | 2010

Identification of Subtypes in Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer Reveals a Gene Signature Prognostic of Outcome

Johan Staaf; Markus Ringnér; Johan Vallon-Christersson; Göran Jönsson; Pär-Ola Bendahl; Karolina Holm; Adalgeir Arason; Haukur Gunnarsson; Cecilia Hegardt; Bjarni A. Agnarsson; Lena Luts; Dorthe Grabau; Mårten Fernö; Per-Olof Malmström; Oskar Th Johannsson; Niklas Loman; Rosa B. Barkardottir; Åke Borg

PURPOSE Human epidermal growth factor receptor 2 (HER2) gene amplification or protein overexpression (HER2 positivity) defines a clinically challenging subgroup of patients with breast cancer (BC) with variable prognosis and response to therapy. We aimed to investigate the heterogeneous biologic appearance and clinical behavior of HER2-positive tumors using molecular profiling. PATIENTS AND METHODS Hierarchical clustering of gene expression data from 58 HER2-amplified tumors of various stage, histologic grade, and estrogen receptor (ER) status was used to construct a HER2-derived prognostic predictor that was further evaluated in several large independent BC data sets. RESULTS Unsupervised analysis identified three subtypes of HER2-positive tumors with mixed stage, histologic grade, and ER status. One subtype had a significantly worse clinical outcome. A prognostic predictor was created based on differentially expressed genes between the subtype with worse outcome and the other subtypes. The predictor was able to define patient groups with better and worse outcome in HER2-positive BC across multiple independent BC data sets and identify a sizable HER2-positive group with long disease-free survival and low mortality. Significant correlation to prognosis was also observed in basal-like, ER-negative, lymph node-positive, and high-grade tumors, irrespective of HER2 status. The predictor included genes associated with immune response, tumor invasion, and metastasis. CONCLUSION The HER2-derived prognostic predictor provides further insight into the heterogeneous biology of HER2-positive tumors and may become useful for improved selection of patients who need additional treatment with new drugs targeting the HER2 pathway.


BMC Cancer | 2011

CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers

Eleonor Olsson; Gabriella Honeth; Pär-Ola Bendahl; Lao H. Saal; Sofia K. Gruvberger-Saal; Markus Ringnér; Johan Vallon-Christersson; Göran Jönsson; Karolina Holm; Kristina Lövgren; Mårten Fernö; Dorthe Grabau; Åke Borg; Cecilia Hegardt

BackgroundThe CD44 cell adhesion molecule is aberrantly expressed in many breast tumors and has been implicated in the metastatic process as well as in the putative cancer stem cell (CSC) compartment. We aimed to investigate potential associations between alternatively spliced isoforms of CD44 and CSCs as well as to various breast cancer biomarkers and molecular subtypes.MethodsWe used q-RT-PCR and exon-exon spanning assays to analyze the expression of four alternatively spliced CD44 isoforms as well as the total expression of CD44 in 187 breast tumors and 13 cell lines. ALDH1 protein expression was determined by IHC on TMA.ResultsBreast cancer cell lines showed a heterogeneous expression pattern of the CD44 isoforms, which shifted considerably when cells were grown as mammospheres. Tumors characterized as positive for the CD44+/CD24- phenotype by immunohistochemistry were associated to all isoforms except the CD44 standard (CD44S) isoform, which lacks all variant exons. Conversely, tumors with strong expression of the CSC marker ALDH1 had elevated expression of CD44S. A high expression of the CD44v2-v10 isoform, which retain all variant exons, was correlated to positive steroid receptor status, low proliferation and luminal A subtype. The CD44v3-v10 isoform showed similar correlations, while high expression of CD44v8-v10 was correlated to positive EGFR, negative/low HER2 status and basal-like subtype. High expression of CD44S was associated with strong HER2 staining and also a subgroup of basal-like tumors. Unsupervised hierarchical cluster analysis of CD44 isoform expression data divided tumors into four main clusters, which showed significant correlations to molecular subtypes and differences in 10-year overall survival.ConclusionsWe demonstrate that individual CD44 isoforms can be associated to different breast cancer subtypes and clinical markers such as HER2, ER and PgR, which suggests involvement of CD44 splice variants in specific oncogenic signaling pathways. Efforts to link CD44 to CSCs and tumor progression should consider the expression of various CD44 isoforms.


Molecular Oncology | 2012

Global H3K27 trimethylation and EZH2 abundance in breast tumor subtypes.

Karolina Holm; Dorthe Grabau; Kristina Lövgren; Steina Aradottir; Sofia K. Gruvberger-Saal; Jillian Howlin; Lao H. Saal; Stephen P. Ethier; Pär-Ola Bendahl; Olle Stål; Per Malmström; Mårten Fernö; Lisa Rydén; Cecilia Hegardt; Åke Borg; Markus Ringnér

Polycomb repressive complex 2 (PRC2) and its core member enhancer of zeste homolog 2 (EZH2) mediate the epigenetic gene silencing mark: trimethylation of lysine 27 on histone 3 (H3K27me3). H3K27me3 is characteristic of the chromatin at genes involved in developmental regulation in undifferentiated cells. Overexpression of EZH2 has been found in several cancer types such as breast, prostate, melanoma and bladder cancer. Moreover, overexpression is associated with highly proliferative and aggressive types of breast and prostate tumors. We have analyzed the abundance of EZH2 and H3K27me3 using immunohistochemistry in two large and well‐characterized breast tumor data sets encompassing more than 400 tumors. The results have been analyzed in relation to the molecular subtypes of breast tumors (basal‐like, luminal A, luminal B, HER2‐enriched and normal‐like), as well as in subtypes defined by clinical markers (triple negative, ER+/HER2−/Ki67low, ER+/HER2−/Ki67high and HER2+), and were validated in representative breast cancer cell lines by western blot. We found significantly different expression of both EZH2 and H3K27me3 across all subtypes with high abundance of EZH2 in basal‐like, triple negative and HER2‐enriched tumors, and high H3K27me3 in luminal A, HER2‐enriched and normal‐like tumors. Intriguingly, the two markers show an inverse correlation, particularly for the basal‐like and triple negative tumors. Consequently, high expression of EZH2 was associated with poor distant disease‐free survival whereas high expression of H3K27me3 was associated with better survival. Additionally, none of 182 breast tumors was found to carry a previously described EZH2 mutation affecting Tyr641. Our observation that increased expression of EZH2 does not necessarily correlate with increased abundance of H3K27me3 supports the idea that EZH2 can have effects beyond epigenetic silencing of target genes in breast cancer.


Nutrition and Cancer | 2011

The Antiproliferative Effect of Dietary Fiber Phenolic Compounds Ferulic Acid and p-Coumaric Acid on the Cell Cycle of Caco-2 Cells.

Birgit Janicke; Cecilia Hegardt; Morten Krogh; Gunilla Önning; Björn Åkesson; Helena Cirenajwis; Stina Oredsson

Epidemiological and animal studies have shown that dietary fiber is protective against the development of colon cancer. Dietary fiber is a rich source of the hydroxycinnamic acids ferulic acid (FA) and p-coumaric acid (p-CA), which both may contribute to the protective effect. We have investigated the effects of FA and p-CA treatment on global gene expression in Caco-2 colon cancer cells. The Caco-2 cells were treated with 150 μM FA or p-CA for 24 h, and gene expression was analyzed with cDNA microarray technique. A total of 517 genes were significantly affected by FA and 901 by p-CA. As we previously have found that FA or p-CA treatment delayed cell cycle progression, we focused on genes involved in proliferation and cell cycle regulation. The expressions of a number of genes involved in centrosome assembly, such as RABGAP1 and CEP2, were upregulated by FA treatment as well as the gene for the S phase checkpoint protein SMC1L1. p-CA treatment upregulated CDKN1A expression and downregulated CCNA2, CCNB1, MYC, and ODC1. Some proteins corresponding to the affected genes were also studied. Taken together, the changes found can partly explain the effects of FA or p-CA treatment on cell cycle progression, specifically in the S phase by FA and G2/M phase by p-CA treatment.


Chemical Communications | 2013

Synthetic modification of salinomycin: selective O-acylation and biological evaluation

Björn Borgström; Xiaoli Huang; Martin Pošta; Cecilia Hegardt; Stina Oredsson; Daniel Strand

Salinomycin has found renewed interest as an agent for prevention of cancer recurrence through selectively targeting cancer stem cells. Strategies for generation of improved salinomycin analogs by individual modification of its hydroxyl groups are presented. An evaluation of the dose-response effects of the resulting library on breast cancer cell lines shows that acylation of the C20 hydroxyl can be used to improve IC50 values down to one fifth that of salinomycin.


Cancer Research | 2012

The Retinoblastoma Gene Undergoes Rearrangements in BRCA1-Deficient Basal-like Breast Cancer

Göran Jönsson; Johan Staaf; Johan Vallon-Christersson; Markus Ringnér; Sofia K. Gruvberger-Saal; Lao H. Saal; Karolina Holm; Cecilia Hegardt; Adalgeir Arason; Rainer Fagerholm; Camilla Persson; Dorthe Grabau; Ellinor Johnsson; Kristina Lövgren; Linda Magnusson; Päivi Heikkilä; Bjarni A. Agnarsson; Oskar Th Johannsson; Per Malmström; Mårten Fernö; Håkan Olsson; Niklas Loman; Heli Nevanlinna; Rosa B. Barkardottir; Åke Borg

Breast tumors from BRCA1 germ line mutation carriers typically exhibit features of the basal-like molecular subtype. However, the specific genes recurrently mutated as a consequence of BRCA1 dysfunction have not been fully elucidated. In this study, we used gene expression profiling to molecularly subtype 577 breast tumors, including 73 breast tumors from BRCA1/2 mutation carriers. Focusing on the RB1 locus, we analyzed 33 BRCA1-mutated, 36 BRCA2-mutated, and 48 non-BRCA1/2-mutated breast tumors using a custom-designed high-density oligomicroarray covering the RB1 gene. We found a strong association between the basal-like subtype and BRCA1-mutated breast tumors and the luminal B subtype and BRCA2-mutated breast tumors. RB1 was identified as a major target for genomic disruption in tumors arising in BRCA1 mutation carriers and in sporadic tumors with BRCA1 promoter methylation but rarely in other breast cancers. Homozygous deletions, intragenic breaks, or microdeletions were found in 33% of BRCA1-mutant tumors, 36% of BRCA1 promoter-methylated basal-like tumors, 13% of non-BRCA1-deficient basal-like tumors, and 3% of BRCA2-mutated tumors. In conclusion, RB1 was frequently inactivated by gross gene disruption in BRCA1 hereditary breast cancer and BRCA1-methylated sporadic basal-like breast cancer but rarely in BRCA2 hereditary breast cancer and non-BRCA1-deficient sporadic breast cancers. Together, our findings show the existence of genetic heterogeneity within the basal-like breast cancer subtype that is based upon BRCA1 status.

Collaboration


Dive into the Cecilia Hegardt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge