Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lao H. Saal is active.

Publication


Featured researches published by Lao H. Saal.


Nature Medicine | 2001

Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks.

Javed Khan; Jun S. Wei; Markus Ringnér; Lao H. Saal; Marc Ladanyi; Frank Westermann; Frank Berthold; Manfred Schwab; Cristina R. Antonescu; Carsten Peterson; Paul S. Meltzer

The purpose of this study was to develop a method of classifying cancers to specific diagnostic categories based on their gene expression signatures using artificial neural networks (ANNs). We trained the ANNs using the small, round blue-cell tumors (SRBCTs) as a model. These cancers belong to four distinct diagnostic categories and often present diagnostic dilemmas in clinical practice. The ANNs correctly classified all samples and identified the genes most relevant to the classification. Expression of several of these genes has been reported in SRBCTs, but most have not been associated with these cancers. To test the ability of the trained ANN models to recognize SRBCTs, we analyzed additional blinded samples that were not previously used for the training procedure, and correctly classified them in all cases. This study demonstrates the potential applications of these methods for tumor diagnosis and the identification of candidate targets for therapy.


Cancer Research | 2005

PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma.

Lao H. Saal; Karolina Holm; Matthew Maurer; Lorenzo Memeo; Tao Su; Xiaomei Wang; Jennifer S. Yu; Per Olof Malmström; Mahesh Mansukhani; Jens Enoksson; Hanina Hibshoosh; Åke Borg; Ramon Parsons

Deregulation of the phosphatidylinositol 3-kinase (PI3K) pathway either through loss of PTEN or mutation of the catalytic subunit alpha of PI3K (PIK3CA) occurs frequently in human cancer. We identified PIK3CA mutations in 26% of 342 human breast tumor samples and cell lines at about equal frequency in tumor stages I to IV. To investigate the relationship between PTEN and PIK3CA, we generated a cohort of tumors that had lost PTEN expression and compared it with a matched control set that had retained PTEN. A highly significant association between PIK3CA mutations and retention of PTEN protein expression was observed. In addition, PIK3CA mutations were associated with expression of estrogen and progesterone receptors (ER/PR), lymph node metastasis, and ERBB2 overexpression. The fact that PIK3CA mutations and PTEN loss are nearly mutually exclusive implies that deregulated phosphatidylinositol-3,4,5-triphosphate (PIP(3)) is critical for tumorigenesis in a significant fraction of breast cancers and that loss of PIP(3) homeostasis by abrogation of either PIK3CA or PTEN relieves selective pressure for targeting of the other gene. The correlation of PIK3CA mutation to ER/PR-positive tumors and PTEN loss to ER/PR-negative tumors argues for disparate branches of tumor evolution. Furthermore, the association between ERBB2 overexpression and PIK3CA mutation implies that more than one input activating the PI3K/AKT pathway may be required to overcome intact PTEN. Thus, mutation of PIK3CA is frequent, occurs early in carcinoma development, and has prognostic and therapeutic implications.


Genome Biology | 2002

BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data.

Lao H. Saal; Carl Troein; Johan Vallon-Christersson; Sofia Gruvberger; Åke Borg; Carsten Peterson

The microarray technique requires the organization and analysis of vast amounts of data. These data include information about the samples hybridized, the hybridization images and their extracted data matrices, and information about the physical array, the features and reporter molecules. We present a web-based customizable bioinformatics solution called BioArray Software Environment (BASE) for the management and analysis of all areas of microarray experimentation. All software necessary to run a local server is freely available.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity

Lao H. Saal; Peter Johansson; Karolina Holm; Sofia K. Gruvberger-Saal; Qing-Bai She; Matthew J. Maurer; Susan Koujak; Adolfo A. Ferrando; Per Malmström; Lorenzo Memeo; Jorma Isola; Pär-Ola Bendahl; Neal Rosen; Hanina Hibshoosh; Markus Ringnér; Åke Borg; Ramon Parsons

Pathway-specific therapy is the future of cancer management. The oncogenic phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in solid tumors; however, currently, no reliable test for PI3K pathway activation exists for human tumors. Taking advantage of the observation that loss of PTEN, the negative regulator of PI3K, results in robust activation of this pathway, we developed and validated a microarray gene expression signature for immunohistochemistry (IHC)-detectable PTEN loss in breast cancer (BC). The most significant signature gene was PTEN itself, indicating that PTEN mRNA levels are the primary determinant of PTEN protein levels in BC. Some PTEN IHC-positive BCs exhibited the signature of PTEN loss, which was associated to moderately reduced PTEN mRNA levels cooperating with specific types of PIK3CA mutations and/or amplification of HER2. This demonstrates that the signature is more sensitive than PTEN IHC for identifying tumors with pathway activation. In independent data sets of breast, prostate, and bladder carcinoma, prediction of pathway activity by the signature correlated significantly to poor patient outcome. Stathmin, encoded by the signature gene STMN1, was an accurate IHC marker of the signature and had prognostic significance in BC. Stathmin was also pathway-pharmacodynamic in vitro and in vivo. Thus, the signature or its components such as stathmin may be clinically useful tests for stratification of patients for anti-PI3K pathway therapy and monitoring therapeutic efficacy. This study indicates that aberrant PI3K pathway signaling is strongly associated with metastasis and poor survival across carcinoma types, highlighting the enormous potential impact on patient survival that pathway inhibition could achieve.


Breast Cancer Research | 2008

The CD44+/CD24- phenotype is enriched in basal-like breast tumors

Gabriella Honeth; Pär-Ola Bendahl; Markus Ringnér; Lao H. Saal; Sofia K. Gruvberger-Saal; Kristina Lövgren; Dorthe Grabau; Mårten Fernö; Åke Borg; Cecilia Hegardt

IntroductionHuman breast tumors are heterogeneous and consist of phenotypically diverse cells. Breast cancer cells with a CD44+/CD24- phenotype have been suggested to have tumor-initiating properties with stem cell-like and invasive features, although it is unclear whether their presence within a tumor has clinical implications. There is also a large heterogeneity between tumors, illustrated by reproducible stratification into various subtypes based on gene expression profiles or histopathological features. We have explored the prevalence of cells with different CD44/CD24 phenotypes within breast cancer subtypes.MethodsDouble-staining immunohistochemistry was used to quantify CD44 and CD24 expression in 240 human breast tumors for which information on other tumor markers and clinical characteristics was available. Gene expression data were also accessible for a cohort of the material.ResultsA considerable heterogeneity in CD44 and CD24 expression was seen both between and within tumors. A complete lack of both proteins was evident in 35% of the tumors, while 13% contained cells of more than one of the CD44+/CD24-, CD44-/CD24+ and CD44+/CD24+ phenotypes. CD44+/CD24- cells were detected in 31% of the tumors, ranging in proportion from only a few to close to 100% of tumor cells. The CD44+/CD24- phenotype was most common in the basal-like subgroup – characterized as negative for the estrogen and progesterone receptors as well as for HER2, and as positive for cytokeratin 5/14 and/or epidermal growth factor receptor, and particularly common in BRCA1 hereditary tumors, of which 94% contained CD44+/CD24- cells. The CD44+/CD24- phenotype was surprisingly scarce in HER2+ tumors, which had a predominantly CD24+ status. A CD44+/CD24- gene expression signature was generated, which included CD44 and α6-integrin (CD49f) among the top-ranked overexpressed genes.ConclusionWe demonstrate an association between basal-like and particularly BRCA1 hereditary breast cancer and the presence of CD44+/CD24- cells. Not all basal-like tumors and very few HER2+ tumors, however, contain CD44+/CD24- cells, emphasizing that a putative tumorigenic ability may not be confined to cells of this phenotype and that other breast cancer stem cell markers remain to be identified.


Nature Genetics | 2008

Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair

Lao H. Saal; Sofia K. Gruvberger-Saal; Camilla Persson; Kristina Lövgren; Johan Staaf; Göran Jönsson; Maira M. Pires; Matthew Maurer; Karolina Holm; Susan Koujak; Shivakumar Subramaniyam; Johan Vallon-Christersson; Haökan Olsson; Tao Su; Lorenzo Memeo; Thomas Ludwig; Stephen P. Ethier; Morten Krogh; Matthias Szabolcs; Vundavalli V. Murty; Jorma Isola; Hanina Hibshoosh; Ramon Parsons; Åke Borg

Basal-like breast cancer (BBC) is a subtype of breast cancer with poor prognosis. Inherited mutations of BRCA1, a cancer susceptibility gene involved in double-strand DNA break (DSB) repair, lead to breast cancers that are nearly always of the BBC subtype; however, the precise molecular lesions and oncogenic consequences of BRCA1 dysfunction are poorly understood. Here we show that heterozygous inactivation of the tumor suppressor gene Pten leads to the formation of basal-like mammary tumors in mice, and that loss of PTEN expression is significantly associated with the BBC subtype in human sporadic and BRCA1-associated hereditary breast cancers. In addition, we identify frequent gross PTEN mutations, involving intragenic chromosome breaks, inversions, deletions and micro copy number aberrations, specifically in BRCA1-deficient tumors. These data provide an example of a specific and recurrent oncogenic consequence of BRCA1-dependent dysfunction in DNA repair and provide insight into the pathogenesis of BBC with therapeutic implications. These findings also argue that obtaining an accurate census of genes mutated in cancer will require a systematic examination for gross gene rearrangements, particularly in tumors with deficient DSB repair.


Electrophoresis | 1999

Expression profiling in cancer using cDNA microarrays.

Javed Khan; Lao H. Saal; Michael L. Bittner; Yidong Chen; Jeffrey M. Trent; Paul S. Meltzer

Currently there are over 1000000 human expressed sequence tag (EST) sequences available on the public database, representing perhaps 50‐90% of all human genes. The cDNA microarray technique is a recently developed tool that exploits this wealth of information for the analysis of gene expression. In this method, DNA probes representing cDNA clones are arrayed onto a glass slide and interrogated with fluorescently labeled cDNA targets. The power of the technology is the ability to perform a genome‐wide expression profile of thousands of genes in one experiment. In our review we describe the principles of the microarray technology as applied to cancer research, summarize the literature on its use so far, and speculate on the future application of this powerful technique.


Science | 2009

Activation of the PI3K Pathway in Cancer through Inhibition of PTEN by Exchange Factor P-REX2a

Barry Fine; Cindy Hodakoski; Susan Koujak; Tao Su; Lao H. Saal; Matthew J. Maurer; Benjamin D. Hopkins; Megan Keniry; Maria Luisa Sulis; Sarah M. Mense; Hanina Hibshoosh; Ramon Parsons

Reigning In Tumor Suppression Mitogenic signaling through phosphoinositide-3 kinase generates the lipid second messenger phosphatidyl inositol 3,4,5-trisphosphate (PIP3). The tumor suppressor gene product and lipid phosphatase PTEN (phosphatase and tensin homolog on chromosome 10) opposes such mitogenic signaling by dephosphorylating PIP3. In a screen for proteins that interact with PTEN, Fine et al. (p. 1261) identified P-REX2a, a guanine nucleotide exchange factor (GEF) for the RAC small guanosine triphosphatase. Endogenous P-REX2a and PTEN interacted in human embryonic kidney 293 cells, and P-REX2a inhibited catalytic activity of PTEN. Thus, like that of many protein phosphatases, the activity of PTEN is kept in check by an interacting protein inhibitor. P-REX2a thus provides a mechanism through which tumor cells may inactivate PTEN. Cancer cell growth is stimulated by the inhibition of a previously unknown step in cell signaling for tumor suppression. PTEN (phosphatase and tensin homolog on chromosome 10) is a tumor suppressor whose cellular regulation remains incompletely understood. We identified phosphatidylinositol 3,4,5-trisphosphate RAC exchanger 2a (P-REX2a) as a PTEN-interacting protein. P-REX2a mRNA was more abundant in human cancer cells and significantly increased in tumors with wild-type PTEN that expressed an activated mutant of PIK3CA encoding the p110 subunit of phosphoinositide 3-kinase subunit α (PI3Kα). P-REX2a inhibited PTEN lipid phosphatase activity and stimulated the PI3K pathway only in the presence of PTEN. P-REX2a stimulated cell growth and cooperated with a PIK3CA mutant to promote growth factor–independent proliferation and transformation. Depletion of P-REX2a reduced amounts of phosphorylated AKT and growth in human cell lines with intact PTEN. Thus, P-REX2a is a component of the PI3K pathway that can antagonize PTEN in cancer cells.


Clinical Cancer Research | 2007

Estrogen receptor beta expression is associated with tamoxifen response in ER alpha-negative breast carcinoma

Sofia K. Gruvberger-Saal; Pär-Ola Bendahl; Lao H. Saal; Mervi Laakso; Cecilia Hegardt; Patrik Edén; Carsten Peterson; Per Malmström; Jorma Isola; Åke Borg; Mårten Fernö

Purpose: Endocrine therapies, such as tamoxifen, are commonly given to most patients with estrogen receptor (ERα)–positive breast carcinoma but are not indicated for persons with ERα-negative cancer. The factors responsible for response to tamoxifen in 5% to 10% of patients with ERα-negative tumors are not clear. The aim of the present study was to elucidate the biology and prognostic role of the second ER, ERβ, in patients treated with adjuvant tamoxifen. Experimental Design: We investigated ERβ by immunohistochemistry in 353 stage II primary breast tumors from patients treated with 2 years adjuvant tamoxifen, and generated gene expression profiles for a representative subset of 88 tumors. Results: ERβ was associated with increased survival (distant disease-free survival, P = 0.01; overall survival, P = 0.22), and in particular within ERα-negative patients (P = 0.003; P = 0.04), but not in the ERα-positive subgroup (P = 0.49; P = 0.88). Lack of ERβ conferred early relapse (hazard ratio, 14; 95% confidence interval, 1.8-106; P = 0.01) within the ERα-negative subgroup even after adjustment for other markers. ERα was an independent marker only within the ERβ-negative tumors (hazard ratio, 0.44; 95% confidence interval, 0.21-0.89; P = 0.02). An ERβ gene expression profile was identified and was markedly different from the ERα signature. Conclusion: Expression of ERβ is an independent marker for favorable prognosis after adjuvant tamoxifen treatment in ERα-negative breast cancer patients and involves a gene expression program distinct from ERα. These results may be highly clinically significant, because in the United States alone, ∼10,000 women are diagnosed annually with ERα-negative/ERβ-positive breast carcinoma and may benefit from adjuvant tamoxifen.


Embo Molecular Medicine | 2015

Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease.

Eleonor Olsson; Christof Winter; Anthony George; Yilun Chen; Jillian Howlin; Man-Hung Eric Tang; Malin Dahlgren; Ralph Schulz; Dorthe Grabau; Danielle van Westen; Mårten Fernö; Christian Ingvar; Carsten Rose; Pär-Ola Bendahl; Lisa Rydén; Åke Borg; Sofia K. Gruvberger-Saal; Helena Jernström; Lao H. Saal

Metastatic breast cancer is usually diagnosed after becoming symptomatic, at which point it is rarely curable. Cell‐free circulating tumor DNA (ctDNA) contains tumor‐specific chromosomal rearrangements that may be interrogated in blood plasma. We evaluated serial monitoring of ctDNA for earlier detection of metastasis in a retrospective study of 20 patients diagnosed with primary breast cancer and long follow‐up. Using an approach combining low‐coverage whole‐genome sequencing of primary tumors and quantification of tumor‐specific rearrangements in plasma by droplet digital PCR, we identify for the first time that ctDNA monitoring is highly accurate for postsurgical discrimination between patients with (93%) and without (100%) eventual clinically detected recurrence. ctDNA‐based detection preceded clinical detection of metastasis in 86% of patients with an average lead time of 11 months (range 0–37 months), whereas patients with long‐term disease‐free survival had undetectable ctDNA postoperatively. ctDNA quantity was predictive of poor survival. These findings establish the rationale for larger validation studies in early breast cancer to evaluate ctDNA as a monitoring tool for early metastasis detection, therapy modification, and to aid in avoidance of overtreatment.

Collaboration


Dive into the Lao H. Saal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge