Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecilia López is active.

Publication


Featured researches published by Cecilia López.


Applied and Environmental Microbiology | 2010

Isolation and Characterization of Potentially Pathogenic Antimicrobial-Resistant Escherichia coli Strains from Chicken and Pig Farms in Spain

Pilar Cortés; Vanessa Blanc; Azucena Mora; Ghizlane Dahbi; Jesús E. Blanco; Miguel Blanco; Cecilia López; Antonia Andreu; Ferran Navarro; María del Pilar León-Castro Alonso; Germán Bou; Jorge Blanco; Montserrat Llagostera

ABSTRACT To ascertain whether on animal farms there reside extended-spectrum β-lactamase (ESBL) and plasmidic class C β-lactamase-producing Escherichia coli isolates potentially pathogenic for humans, phylogenetic analyses, pulsed-field gel electrophoresis (PFGE) typing, serotyping, and virulence genotyping were performed for 86 isolates from poultry (57 isolates) and pig (29 isolates) farms. E. coli isolates from poultry farms carried genes encoding enzymes of the CTX-M-9 group as well as CMY-2, whereas those from pig farms mainly carried genes encoding CTX-M-1 enzymes. Poultry and pig isolates differed significantly in their phylogenetic group assignments, with phylogroup A predominating in pig isolates and phylogroup D predominating in avian isolates. Among the 86 farm isolates, 23 (26.7%) carried two or more virulence genes typical of extraintestinal pathogenic E. coli (ExPEC). Of these, 20 were isolated from poultry farms and only 3 from pig farms. Ten of the 23 isolates belonged to the classic human ExPEC serotypes O2:H6, O2:HNM, O2:H7, O15:H1, and O25:H4. Despite the high diversity of serotypes and pulsotypes detected among the 86 farm isolates, 13 PFGE clusters were identified. Four of these clusters contained isolates with two or more virulence genes, and two clusters exhibited the classic human ExPEC serotypes O2:HNM (ST10) and O2:H6 (ST115). Although O2:HNM and O2:H6 isolates of human and animal origins differed with respect to their virulence genes and PFGE pulsotypes, the O2:HNM isolates from pigs showed the same sequence type (ST10) as those from humans. The single avian O15:H1 isolate was compared with human clinical isolates of this serotype. Although all were found to belong to phylogroup D and shared the same virulence gene profile, they differed in their sequence types (ST362-avian and ST393-human) and PFGE pulsotypes. Noteworthy was the detection, for the first time, in poultry farms of the clonal groups O25b:H4-ST131-B2, producing CTX-M-9, and O25a-ST648-D, producing CTX-M-32. The virulence genes and PFGE profiles of these two groups were very similar to those of clinical human isolates. While further studies are required to determine the true zoonotic potential of these clonal groups, our results emphasize the zoonotic risk posed especially by poultry farms, but also by pig farms, as reservoirs of ESBL- and CMY-2-encoding E. coli.


Journal of Antimicrobial Chemotherapy | 2011

National survey of Escherichia coli causing extraintestinal infections reveals the spread of drug-resistant clonal groups O25b:H4-B2-ST131, O15:H1-D-ST393 and CGA-D-ST69 with high virulence gene content in Spain

Jorge Blanco; Azucena Mora; Rosalía Mamani; Cecilia López; Miguel Blanco; Ghizlane Dahbi; Alexandra Herrera; Jesús E. Blanco; María del Pilar León-Castro Alonso; Fernando García-Garrote; Fernando Chaves; María Ángeles Orellana; Luis Martínez-Martínez; Jorge Calvo; Guillem Prats; María Nieves Larrosa; Juan José González-López; Lorena López-Cerero; Jesús Rodríguez-Baño; Álvaro Pascual

OBJECTIVES To evaluate the current prevalence of the three clonal groups O25b:H4-B2-ST131, O15:H1-D-ST393 and CGA-D-ST69 (where ST stands for sequence type) among Escherichia coli isolates causing extraintestinal infections in Spain and to characterize their virulence background, 500 consecutive non-duplicate E. coli isolates causing extraintestinal infections were analysed. METHODS The 500 isolates were collected during February 2009 from five hospitals in different Spanish regions. Phylogenetic groups, STs, serotypes, virulence genes, PFGE profiles, antimicrobial resistance and extended-spectrum β-lactamase (ESBL) enzymes were determined. RESULTS The three clonal groups accounted for 19% of the 500 isolates. Furthermore, they accounted for 37% of the isolates exhibiting trimethoprim/sulfamethoxazole plus ciprofloxacin resistance, 34% of aminoglycoside-resistant isolates and 30% of multidrug-resistant isolates. Clonal group ST131 was the most prevalent, and accounted for 12% of isolates overall and for 23% of multidrug-resistant isolates. The ST131 isolates exhibited a significantly higher virulence score (mean of virulence genes 8.1) compared with the ST393 (6.0) and ST69 (5.4) isolates. The prevalence of ESBL-producing isolates was 7%. Six (10%) of the 59 ST131 isolates were positive for CTX-M-15 and one (6%) of the 16 ST393 isolates was positive for CTX-M-14, whereas none of the 22 ST69 isolates produced ESBL enzymes. CONCLUSIONS The three clonal groups investigated accounted for 30% of the multidrug-resistant isolates, which gives evidence of an important clonal component in the emergence of resistances among extraintestinal pathogenic E. coli. Notably, a single high virulence clonal group (O25b:H4-B2-ST131) causes approximately 1 in every 10 extraintestinal infections in Spain, representing an important public health threat. A new variant of the ST131 clonal group, which is non-ESBL-producing but trimethoprim/sulfamethoxazole resistant and with high virulence content, is reported.


BMC Microbiology | 2009

Extraintestinal pathogenic Escherichia coli O1:K1:H7/NM from human and avian origin: detection of clonal groups B2 ST95 and D ST59 with different host distribution

Azucena Mora; Cecilia López; Ghizlane Dabhi; Miguel Blanco; Jesús E. Blanco; María del Pilar León-Castro Alonso; Alexandra Herrera; Rosalía Mamani; Stéphane Bonacorsi; Maryvonne Moulin-Schouleur; Jorge Blanco

BackgroundExtraintestinal pathogenic Escherichia coli (ExPEC) strains of serotype O1:K1:H7/NM are frequently implicated in neonatal meningitis, urinary tract infections and septicemia in humans. They are also commonly isolated from colibacillosis in poultry. Studies to determine the similarities of ExPEC from different origins have indicated that avian strains potentially have zoonotic properties.ResultsA total of 59 ExPEC O1:K1:H7/NM isolates (21 from avian colibacillosis, 15 from human meningitis, and 23 from human urinary tract infection and septicemia) originated from four countries were characterized by phylogenetic PCR grouping, Multilocus Sequence Typing (MLST), Pulsed Field Gel Electrophoresis (PFGE) and genotyping based on several genes known for their association with ExPEC or avian pathogenic Escherichia coli (APEC) virulence.APEC and human ExPEC isolates differed significantly in their assignments to phylogenetic groups, being phylogroup B2 more prevalent among APEC than among human ExPEC (95% vs. 53%, P = 0.001), whereas phylogroup D was almost exclusively associated with human ExPEC (47% vs. 5%, P = 0.0000). Seven virulence genes showed significant differences, being fimAvMT78 and sat genes linked to human isolates, while papGII, tsh, iron, cvaC and iss were significantly associated to APEC. By MLST, 39 of 40 ExPEC belonging to phylogroup B2, and 17 of 19 belonging to phylogroup D exhibited the Sequence Types (STs) ST95 and ST59, respectively. Additionally, two novel STs (ST1013 and ST1006) were established. Considering strains sharing the same ST, phylogenetic group, virulence genotype and PFGE cluster to belong to the same subclone, five subclones were detected; one of those grouped six strains of human and animal origin from two countries.ConclusionPresent results reveal that the clonal group B2 O1:K1:H7/NM ST95, detected in strains of animal and human origin, recovered from different dates and geographic sources, provides evidence that some APEC isolates may act as potential pathogens for humans and, consequently, poultry as a foodborne source, suggesting no host specificity for this type of isolates. A novel and important finding has been the detection of the clonal group D O1:K1:H7/NM ST59 almost exclusively in humans, carrying pathogenic genes linked to the phylogenetic group D. This finding would suggest D O1:K1:H7/NM ST59 as a host specific pathotype for humans.


Applied and Environmental Microbiology | 2010

Recent Emergence of Clonal Group O25b:K1:H4-B2-ST131 ibeA Strains among Escherichia coli Poultry Isolates, Including CTX-M-9-Producing Strains, and Comparison with Clinical Human Isolates

Azucena Mora; Alexandra Herrera; Rosalía Mamani; Cecilia López; María del Pilar León-Castro Alonso; Jesús E. Blanco; Miguel Blanco; Ghizlane Dahbi; Fernando García-Garrote; Julia Pita; Amparo Coira; María Isabel Bernárdez; Jorge Blanco

ABSTRACT To discern the possible spread of the Escherichia coli O25b:H4-ST131 clonal group in poultry and the zoonotic potential of avian strains, we made a retrospective search of our strain collection and compared the findings for those strains with the findings for current strains. Thus, we have characterized a collection of 19 avian O25b:H4-ST131 E. coli strains isolated from 1995 to 2010 which, interestingly, harbored the ibeA gene. Using this virulence gene as a criterion for selection, we compared those 19 avian strains with 33 human O25b:H4-ST131 ibeA-positive E. coli strains obtained from patients with extraintestinal infections (1993 to 2009). All 52 O25b:H4-ST131 ibeA-positive E. coli strains shared the fimH, kpsMII, malX, and usp genes but showed statistically significant differences in nine virulence factors, namely, papGIII, cdtB, sat, and kpsMII K5, which were associated with human strains, and iroN, kpsMII K1, cvaC, iss, and tsh, which were associated with strains of avian origin. The XbaI macrorestriction profiles of the 52 E. coli O25b:H4-ST131 ibeA-positive strains revealed 11 clusters (clusters I to XI) of >85% similarity, with four clusters including strains of human and avian origin. Cluster VII (90.9% similarity) grouped 10 strains (7 avian and 3 human strains) that mostly produced CTX-M-9 and that also shared the same virulence profile. Finally, we compared the macrorestriction profiles of the 12 CTX-M-9-producing O25b:H4-ST131 ibeA strains (7 avian and 5 human strains) identified among the 52 strains with those of 15 human O25b:H4-ST131 CTX-M-14-, CTX-M-15-, and CTX-M-32-producing strains that proved to be negative for ibeA and showed that they clearly differed in the level of similarity from the CTX-M-9-producing strains. In conclusion, E. coli clonal group O25b:H4-ST131 ibeA has recently emerged among avian isolates with the new acquisition of the K1 capsule antigen and includes CTX-M-9-producing strains. This clonal group represents a real zoonotic risk that has crossed the barrier between human and avian hosts.


BMC Microbiology | 2007

Serotypes, virulence genes and intimin types of Shiga toxin (verocytotoxin)-producing Escherichia coli isolates from minced beef in Lugo (Spain) from 1995 through 2003

Azucena Mora; Miguel Blanco; Jesús E. Blanco; Ghizlane Dahbi; Cecilia López; Paula Justel; M. P. Alonso; Aurora Echeita; María Isabel Bernárdez; Enrique A. González; Jorge Blanco

BackgroundShiga toxin-producing Escherichia coli (STEC) have emerged as pathogens that can cause food-borne infections and severe and potentially fatal illnesses in humans, such as haemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS). In Spain, like in many other countries, STEC strains have been frequently isolated from ruminants, and represent a significant cause of sporadic cases of human infection. In view of the lack of data on STEC isolated from food in Spain, the objectives of this study were to determine the level of microbiological contamination and the prevalence of STEC O157:H7 and non-O157 in a large sampling of minced beef collected from 30 local stores in Lugo city between 1995 and 2003. Also to establish if those STEC isolated from food possessed the same virulence profiles as STEC strains causing human infections.ResultsSTEC were detected in 95 (12%) of the 785 minced beef samples tested. STEC O157:H7 was isolated from eight (1.0%) samples and non-O157 STEC from 90 (11%) samples. Ninety-six STEC isolates were further characterized by PCR and serotyping. PCR showed that 28 (29%) isolates carried stx1 genes, 49 (51%) possessed stx2 genes, and 19 (20%) both stx1 and stx2. Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 43 (45%) and in 25 (26%) of the isolates, respectively. Typing of the eae variants detected four types: γ1 (nine isolates), β1 (eight isolates), ε1 (three isolates), and θ (two isolates). The majority (68%) of STEC isolates belonged to serotypes previously detected in human STEC and 38% to serotypes associated with STEC isolated from patients with HUS. Ten new serotypes not previously described in raw beef products were also detected. The highly virulent seropathotypes O26:H11 stx1eae-β1, O157:H7 stx1stx2eae-γ1 and O157:H7 stx2eae-γ1, which are the most frequently observed among STEC causing human infections in Spain, were detected in 10 of the 96 STEC isolates. Furthermore, phage typing of STEC O157:H7 isolates showed that the majority (seven of eight isolates) belonged to the main phage types previously detected in STEC O157:H7 strains associated with severe human illnesses.ConclusionThe results of this study do not differ greatly from those reported in other countries with regard to prevalence of O157 and non-O157 STEC in minced beef. As we suspected, serotypes different from O157:H7 also play an important role in food contamination in Spain, including the highly virulent seropathotype O26:H11 stx1eae-β1. Thus, our data confirm minced beef in the city of Lugo as vehicles of highly pathogenic STEC. This requires that control measures to be introduced and implemented to increase the safety of minced beef.


Journal of Clinical Microbiology | 2009

Similarity and Divergence among Adherent-Invasive Escherichia coli and Extraintestinal Pathogenic E. coli Strains

Margarita Martinez-Medina; Azucena Mora; Miguel Blanco; Cecilia López; María del Pilar León-Castro Alonso; Stéphane Bonacorsi; Marie-Hélène Nicolas-Chanoine; Arlette Darfeuille-Michaud; Jesus Garcia-Gil; Jorge Blanco

ABSTRACT Adherent-invasive Escherichia coli (AIEC) pathovar strains, which are associated with Crohns disease, share many genetic and phenotypic features with extraintestinal pathogenic E. coli (ExPEC) strains, but little is known about the level of genetic similarity between the two pathovars. We aimed to determine the frequency of strains with the “AIEC phenotype” among a collection of ExPEC strains and to further search for a common phylogenetic origin for the intestinal and extraintestinal AIEC strains. The adhesion, invasion, and intramacrophage replication capabilities (AIEC phenotype) of 63 ExPEC strains were determined. Correlations between virulence genotype and AIEC phenotype and between intestinal/extraintestinal origin, serotype, and phylogroup were evaluated for the 63 ExPEC and 23 intestinal AIEC strains. Phylogenetic relationships between extraintestinal and intestinal AIEC strains were determined using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis. Only four (6.35%) ExPEC strains, belonging to the O6:H1, O83:H1, and O25:H4 serotypes, were classified as having an AIEC phenotype. These strains were found to be genetically related to some intestinal AIEC strains of the same serotypes as revealed by MLST. No particular virulence gene sets correlated with the intestinal/extraintestinal origin of the strains or with the AIEC phenotype, whereas the gene sets did correlate with the serogroup. We identified two intestinal AIEC strains and one extraintestinal AIEC strain belonging to the O25:H4 serotype that also belonged to the emerging and virulent clonal group ST131. In conclusion, the ExPEC and AIEC pathovars share similar virulence gene sets, and certain strains are phylogenetically related. However, the majority of ExPEC strains did not behave like AIEC strains, thus confirming that the AIEC pathovar possesses virulence-specific features that, to date, are detectable only phenotypically.


International Journal of Antimicrobial Agents | 2011

Emergence of clonal groups O1:HNM-D-ST59, O15:H1-D-ST393, O20:H34/HNM-D-ST354, O25b:H4-B2-ST131 and ONT:H21,42-B1-ST101 among CTX-M-14-producing Escherichia coli clinical isolates in Galicia, northwest Spain

Azucena Mora; Miguel Blanco; Cecilia López; Rosalía Mamani; Jesús E. Blanco; María del Pilar León-Castro Alonso; Fernando García-Garrote; Ghizlane Dahbi; Alexandra Herrera; Ana Patricia Fernández; Begoña Vidal Fernández; Andrés Agulla; Germán Bou; Jorge Blanco

CTX-M enzymes, mainly CTX-M-14 and CTX-M-15, have emerged as the most prevalent extended-spectrum β-lactamase (ESBL) type produced by Escherichia coli in Spain, with successful dissemination of clonal group O25b:H4-B2-ST131 producing CTX-M-15 within the hospital and community settings. However, until now CTX-M-14-producing E. coli in Spain had been shown to belong to a wide variety of serotypes with no predominance of a certain clonal group. In the present study, 654 E. coli strains positive for ESBL production obtained between 2005 and 2008 from inpatients and outpatients of four hospitals in Galicia, northwest Spain, were analysed. The strains were characterised with regard to ESBL enzymes, serotype, virulence genes, phylogenetic group, multilocus sequence type, and pulsed-field gel electrophoresis of XbaI-digested DNA. As a result, the emergence of certain clonal groups of extraintestinal pathogenic E. coli producing CTX-M-14 has been detected in this geographic area, including O1:HNM-D-ST59, O15:H1-D-ST393/ST1394, O20:H34/HNM-D-ST354, O25b:H4-B2-ST131 and ONT:H21,42-B1-ST101. These five clonal groups showed a high virulence potential as they harboured more than eight virulence factors, which could explain their successful dissemination.


International Microbiology | 2011

Characteristics of the Shiga-toxin-producing enteroaggregative Escherichia coli O104:H4 German outbreak strain and of STEC strains isolated in Spain

Azucena Mora; Alexandra Herrera; Cecilia López; Ghizlane Dahbi; Rosalía Mamani; Julia Pita; María del Pilar León-Castro Alonso; José Llovo; María Isabel Bernárdez; Jesús E. Blanco; Miguel Blanco; Jorge Blanco

A Shiga-toxin-producing Escherichia coli (STEC) strain belonging to serotype O104:H4, phylogenetic group B1 and sequence type ST678, with virulence features common to the enteroaggregative E. coli (EAEC) pathotype, was reported as the cause of the recent 2011 outbreak in Germany. The outbreak strain was determined to carry several virulence factors of extraintestinal pathogenic E. coli (ExPEC) and to be resistant to a wide range of antibiotics. There are only a few reports of serotype O104:H4, which is very rare in humans and has never been detected in animals or food. Several research groups obtained the complete genome sequence of isolates of the German outbreak strain as well as the genome sequences of EAEC of serotype O104:H4 strains from Africa. Those findings suggested that horizontal genetic transfer allowed the emergence of the highly virulent Shiga-toxin-producing enteroaggregative E. coli (STEAEC) O104:H4 strain responsible for the outbreak in Germany. Epidemiologic investigations supported a linkage between the outbreaks in Germany and France and traced their origin to fenugreek seeds imported from Africa. However, there has been no isolation of the causative strain O104:H4 from any of the samples of fenugreek seeds analyzed. Following the German outbreak, we conducted a large sampling to analyze the presence of STEC, EAEC, and other types of diarrheagenic E. coli strains in Spanish vegetables. During June and July 2011, 200 vegetable samples from different origins were analyzed. All were negative for the virulent serotype O104:H4 and only one lettuce sample (0.6%) was positive for a STEC strain of serotype O146:H21 (stx1, stx2), considered of low virulence. Despite the single positive case, the hygienic and sanitary quality of Spanish vegetables proved to be quite good. In 195 of the 200 samples (98%), <10 colony-forming units (cfu) of E. coli per gram were detected, and the microbiological levels of all samples were satisfactory (<100 cfu/g). The samples were also negative for other pathotypes of diarrheagenic E. coli (EAEC, ETEC, tEPEC, and EIEC). Consistent with data from other countries, STEC belonging to serotype O157:H7 and other serotypes have been isolated from beef, milk, cheese, and domestic (cattle, sheep, goats) and wild (deer, boar, fox) animals in Spain. Nevertheless, STEC outbreaks in Spain are rare.


Applied and Environmental Microbiology | 2012

Seropathotypes, Phylogroups, Stx Subtypes, and Intimin Types of Wildlife-Carried, Shiga Toxin-Producing Escherichia coli Strains with the Same Characteristics as Human-Pathogenic Isolates

Azucena Mora; Cecilia López; Ghizlane Dhabi; Ana López-Beceiro; Luis Eusebio Fidalgo; Eduardo A. Díaz; C. Martínez-Carrasco; Rosalía Mamani; Alexandra Herrera; Jesús E. Blanco; Miguel Blanco; Jorge Blanco

ABSTRACT The objectives of this study were to investigate the presence of Shiga toxin-producing Escherichia coli (STEC) strains in wildlife that have spread in Europe, living near human settlements; to analyze their epidemiological role in maintenance and transmission to domestic livestock; and to assess the potential health risk of wildlife-carried strains. STEC strains were recovered from 53% of roe deer, 8.4% of wild boars, and 1.9% of foxes sampled in the northwest of Spain (Galicia). Of the 40 serotypes identified, 21 were classified as seropathotypes associated with human disease, accounting for 81.5% of the wildlife-carried STEC strains, including the enterohemorrhagic serotypes O157:H7-D-eae-γ1, O26:[H11]-B1-eae-β1, O121:H19-B1-eae-ε1, and O145:[H28]-D-eae-γ1. None of the wildlife-carried strains belonged to the highly pathogenic serotype O104:H4-B1 from the recent Germany outbreak. Forty percent of wildlife-carried STEC strains shared serotypes, phylogroups, intimin types, and Stx profiles with isolates from human patients from the same geographic area. Furthermore, wildlife-carried strains belonging to serotypes O5:HNM-A, O26:[H11]-B1, O76:H19-B1, O145:[H28]-D, O146:H21-B1, and O157:H7-D showed pulsed-field gel electrophoresis (PFGE) profiles with >85% similarity to human-pathogenic STEC strains. We also found a high level of similarity among STEC strains of serotypes O5:HNM-A, O26:[H11]-B1, and O145:HNM-D of bovine (feces and beef) and wildlife origins. Interestingly, O146:H21-B1, the second most frequently detected serotype in this study, is commonly associated with human diarrhea and isolated from beef and vegetables sold in Galicia. Importantly, at least 3 STEC isolates from foxes (O5:HNM-A-eae-β1, O98:[H21]-B1-eae-ζ1, and O146:[H21]-B1) showed characteristics similar to those of human STEC strains. In conclusion, roe deer, wild boar, and fox in Galicia are confirmed to be carriers of STEC strains potentially pathogenic for humans and seem to play an important role in the maintenance of STEC.


Journal of Antimicrobial Chemotherapy | 2014

Prevalence of day-care centre children (France) with faecal CTX-M-producing Escherichia coli comprising O25b:H4 and O16:H5 ST131 strains

Véronique Blanc; Véronique Leflon-Guibout; Jorge Blanco; Marisa Haenni; Jean-Yves Madec; Gwenaële Rafignon; Pascale Bruno; Azucena Mora; Cecilia López; Ghizlane Dahbi; Brigitte Dunais; Magali Anastay; Catherine Branger; Richard Moreau; Christian Pradier; Marie-Hélène Nicolas-Chanoine

OBJECTIVES Determining the prevalence of children in day-care centres (DCCs) carrying faecal extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and molecularly characterizing those belonging to the Escherichia coli species. METHODS Stools were collected from childrens diapers (January-April 2012) in randomly chosen DCCs and plated onto ChromID ESBL. Colonies growing on this medium were identified by the Vitek 2 system and tested for antibiotic susceptibility and for ESBL production by the double-disc synergy test. ESBL genotypes were determined as well as phylogenetic groups, ERIC-2 (enterobacterial repetitive intergenic consensus) PCR profiles and sequence types (STs) for the E. coli isolates. Serotypes, virotypes, fimH alleles, ESBL-carrying plasmids and PFGE patterns were determined for the ST131 E. coli isolates. RESULTS Among 419 children from 25 participating DCCs, 1 was colonized by CTX-M-15-producing Klebsiella pneumoniae and 27 (6.4%) by E. coli, which all produced CTX-M enzymes [CTX-M-15 (37%), CTX-M-1 (26%), CTX-M-14 (22%), CTX-M-27 (11%) and CTX-M-22 (4%)]. The 27 E. coli isolates, 55.5% belonging to group B2, displayed 20 ERIC-2 PCR profiles and 16 STs. The ST131 E. coli isolates were dominant (44%), displayed serotypes O25b:H4 and O16:H5, fimH alleles 30 and 41 and virotypes A and C. According to the PFGE patterns, one strain of E. coli ST131 producing a CTX-M-15 enzyme carried by an IncF F2:A1:B- plasmid had spread within one DCC. CONCLUSIONS This study shows a notable prevalence (6.4%) of DCC children with faecal CTX-M-producing E. coli isolates comprising a high proportion of E. coli ST131 isolates, suggesting that these children might be a reservoir of this clone.

Collaboration


Dive into the Cecilia López's collaboration.

Top Co-Authors

Avatar

Azucena Mora

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Jorge Blanco

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Miguel Blanco

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Ghizlane Dahbi

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Jesús E. Blanco

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Rosalía Mamani

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Alexandra Herrera

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Juan Marzoa

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Enrique A. González

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Susana Viso

University of Santiago de Compostela

View shared research outputs
Researchain Logo
Decentralizing Knowledge