Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ghizlane Dahbi is active.

Publication


Featured researches published by Ghizlane Dahbi.


Journal of Clinical Microbiology | 2004

Serotypes, Virulence Genes, and Intimin Types of Shiga Toxin (Verotoxin)-Producing Escherichia coli Isolates from Cattle in Spain and Identification of a New Intimin Variant Gene (eae-ξ)

Miguel Blanco; Jesús E. Blanco; Azucena Mora; Ghizlane Dahbi; M. P. Alonso; Enrique A. González; María Isabel Bernárdez; Jorge Blanco

ABSTRACT A total of 514 Shiga toxin-producing Escherichia coli (STEC) isolates from diarrheic and healthy cattle in Spain were characterized in this study. PCR showed that 101 (20%) isolates carried stx1 genes, 278 (54%) possessed stx2 genes, and 135 (26%) possessed both stx1 and stx2. Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 326 (63%) and in 151 (29%) of the isolates, respectively. STEC isolates belonged to 66 O serogroups and 113 O:H serotypes (including 23 new serotypes). However, 67% were of one of these 15 serogroups (O2, O4, O8, O20, O22, O26, O77, O91, O105, O113, O116, O157, O171, O174, and OX177) and 52% of the isolates belonged to only 10 serotypes (O4:H4, O20:H19, O22:H8, O26:H11, O77:H41, O105:H18, O113:H21, O157:H7, O171:H2, and ONT:H19). Although the 514 STEC isolates belonged to 164 different seropathotypes (associations between serotypes and virulence genes), only 12 accounted for 43% of isolates. Seropathotype O157:H7 stx2eae-γ1 ehxA (46 isolates) was the most common, followed by O157:H7 stx1stx2eae-γ1 ehxA (34 isolates), O113:H21 stx2 (25 isolates), O22:H8 stx1stx2ehxA (15 isolates), O26:H11 stx1eae-β1 ehxA (14 isolates), and O77:H41 stx2ehxA (14 isolates). Forty-one (22 of serotype O26:H11) isolates had intiminβ 1, 82 O157:H7 isolates possessed intimin γ1, three O111:H- isolates had intimin type γ2, one O49:H- strain showed intimin type δ, 13 (six of serotype O103:H2) isolates had intimin type ε and eight (four of serotype O156:H-) isolates had intimin ζ. We have identified a new variant of the eae intimin gene designated ξ (xi) in two isolates of serotype O80:H-. The majority (85%) of bovine STEC isolates belonged to serotypes previously found for human STEC organisms and 54% to serotypes associated with STEC organisms isolated from patients with hemolytic uremic syndrome. Thus, this study confirms that cattle are a major reservoir of STEC strains pathogenic for humans.


Journal of Clinical Microbiology | 2004

Serotypes, Virulence Genes, and Intimin Types of Shiga Toxin (Verotoxin)-Producing Escherichia coli Isolates from Human Patients: Prevalence in Lugo, Spain, from 1992 through 1999

Jesús E. Blanco; Miguel Blanco; M. P. Alonso; Azucena Mora; Ghizlane Dahbi; María Amparo Coira; Jorge Blanco

ABSTRACT We have analyzed the prevalence of Shiga toxin-producing Escherichia coli (STEC) in stool specimens of patients with diarrhea or other gastrointestinal alterations from the Xeral-Calde Hospital of Lugo City (Spain). STEC strains were detected in 126 (2.5%) of 5,054 cases investigated, with a progressive increase in the incidence from 0% in 1992 to 4.4% in 1999. STEC O157:H7 was isolated in 24 cases (0.5%), whereas non-O157 STEC strains were isolated from 87 patients (1.7%). STEC strains were (after Salmonella and Campylobacter strains) the third most frequently recovered enteropathogenic bacteria. A total of 126 human STEC isolates were characterized in this study. PCR showed that 43 (34%) isolates carried stx1 genes, 45 (36%) possessed stx2 genes and 38 (30%) carried both stx1 and stx2. A total of 88 (70%) isolates carried an ehxA enterohemolysin gene, and 70 (56%) isolates possessed an eae intimin gene (27 isolates with type γ1, 20 with type β1, 8 with type ζ, 5 with type γ2, and 3 with type ε). STEC isolates belonged to 41 O serogroups and 66 O:H serotypes, including 21 serotypes associated with hemolytic uremic syndrome and 30 new serotypes not previously reported among human STEC strains in other studies. Although the 126 STEC isolates belonged to 81 different seropathotypes (associations between serotypes and virulence genes), only four accounted for 31% of isolates. Seropathotype O157:H7 stx1stx2eae-γ1 ehxA was the most common (13 isolates) followed by O157:H7 stx2eae-γ1 ehxA (11 isolates), O26:H11 stx1eae-β1 ehxA (11 isolates), and O111:H- stx1stx2eae-γ2 ehxA (4 isolates). Our results suggest that STEC strains are a significant cause of human infections in Spain and confirm that in continental Europe, infections caused by STEC non-O157 strains are more common than those caused by O157:H7 isolates. The high prevalence of STEC strains (both O157:H7 and non-O157 strains) in human patients, and their association with serious complications, strongly supports the utilization of protocols for detection of all serotypes of STEC in Spanish clinical microbiology laboratories.


Journal of Clinical Microbiology | 2003

Serotypes, Virulence Genes, and Intimin Types of Shiga Toxin (Verotoxin)-Producing Escherichia coli Isolates from Healthy Sheep in Spain

Miguel Blanco; J.E. Blanco; Azucena Mora; J. Rey; J.M. Alonso; M. Hermoso; J. Hermoso; M. P. Alonso; Ghizlane Dahbi; Enrique A. González; María Isabel Bernárdez; Jesús E. Blanco

ABSTRACT Fecal swabs obtained from 1,300 healthy lambs in 93 flocks in Spain in 1997 were examined for Shiga toxin-producing Escherichia coli (STEC). STEC O157:H7 strains were isolated from 5 (0.4%) animals in 4 flocks, and non-O157 STEC strains were isolated from 462 (36%) lambs in 63 flocks. A total of 384 ovine STEC strains were characterized in this study. PCR showed that 213 (55%) strains carried the stx1 gene, 10 (3%) possessed the stx2 gene, and 161 (42%) carried both the stx1 and the stx2 genes. Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 106 (28%) and 23 (6%) of the STEC strains, respectively. The STEC strains belonged to 35 O serogroups and 64 O:H serotypes (including 18 new serotypes). However, 72% were of 1 of the following 12 serotypes: O5:H−, O6:H10, O91:H−, O117:H−, O128:H−, O128:H2, O136:H20, O146:H8, O146:H21, O156:H−, O166:H28, and ONT:H21 (where NT is nontypeable). Although the 384 STEC strains belonged to 95 different seropathotypes (associations between serotypes and virulence genes), 49% of strains belonged to only 11. O91:H− stx1stx2 (54 strains) was the most common seropathotype, followed by O128:H− stx1stx2 (33 strains) and O6:H10 stx1 (25 strains). Three strains of serotypes O26:H11, O156:H11, and OX177:H11 had intimin type β1; 5 strains of serotype O157:H7 possessed intimin type γ1; and 15 strains of serotypes O49:H−, O52:H12, O156:H− (12 strains), and O156:H25 had the new intimin, intimin type ζ. The majority (82%) of ovine STEC strains belonged to serotypes previously found to be associated with human STEC strains, and 51% belonged to serotypes associated with STEC strains isolated from patients with hemolytic-uremic syndrome. Thus, this study confirms that healthy sheep are a major reservoir of STEC strains pathogenic for humans.


Applied and Environmental Microbiology | 2010

Isolation and Characterization of Potentially Pathogenic Antimicrobial-Resistant Escherichia coli Strains from Chicken and Pig Farms in Spain

Pilar Cortés; Vanessa Blanc; Azucena Mora; Ghizlane Dahbi; Jesús E. Blanco; Miguel Blanco; Cecilia López; Antonia Andreu; Ferran Navarro; María del Pilar León-Castro Alonso; Germán Bou; Jorge Blanco; Montserrat Llagostera

ABSTRACT To ascertain whether on animal farms there reside extended-spectrum β-lactamase (ESBL) and plasmidic class C β-lactamase-producing Escherichia coli isolates potentially pathogenic for humans, phylogenetic analyses, pulsed-field gel electrophoresis (PFGE) typing, serotyping, and virulence genotyping were performed for 86 isolates from poultry (57 isolates) and pig (29 isolates) farms. E. coli isolates from poultry farms carried genes encoding enzymes of the CTX-M-9 group as well as CMY-2, whereas those from pig farms mainly carried genes encoding CTX-M-1 enzymes. Poultry and pig isolates differed significantly in their phylogenetic group assignments, with phylogroup A predominating in pig isolates and phylogroup D predominating in avian isolates. Among the 86 farm isolates, 23 (26.7%) carried two or more virulence genes typical of extraintestinal pathogenic E. coli (ExPEC). Of these, 20 were isolated from poultry farms and only 3 from pig farms. Ten of the 23 isolates belonged to the classic human ExPEC serotypes O2:H6, O2:HNM, O2:H7, O15:H1, and O25:H4. Despite the high diversity of serotypes and pulsotypes detected among the 86 farm isolates, 13 PFGE clusters were identified. Four of these clusters contained isolates with two or more virulence genes, and two clusters exhibited the classic human ExPEC serotypes O2:HNM (ST10) and O2:H6 (ST115). Although O2:HNM and O2:H6 isolates of human and animal origins differed with respect to their virulence genes and PFGE pulsotypes, the O2:HNM isolates from pigs showed the same sequence type (ST10) as those from humans. The single avian O15:H1 isolate was compared with human clinical isolates of this serotype. Although all were found to belong to phylogroup D and shared the same virulence gene profile, they differed in their sequence types (ST362-avian and ST393-human) and PFGE pulsotypes. Noteworthy was the detection, for the first time, in poultry farms of the clonal groups O25b:H4-ST131-B2, producing CTX-M-9, and O25a-ST648-D, producing CTX-M-32. The virulence genes and PFGE profiles of these two groups were very similar to those of clinical human isolates. While further studies are required to determine the true zoonotic potential of these clonal groups, our results emphasize the zoonotic risk posed especially by poultry farms, but also by pig farms, as reservoirs of ESBL- and CMY-2-encoding E. coli.


Veterinary Microbiology | 2003

Serotypes, phage types and virulence genes of Shiga-producing Escherichia coli isolated from sheep in Spain

J. Rey; Jesús E. Blanco; Miguel Blanco; Azucena Mora; Ghizlane Dahbi; J.M. Alonso; Miguel Hermoso; Javier Hermoso; M. P. Alonso; M. A. Usera; Enrique A. González; María Isabel Bernárdez; Jorge Blanco

PROBLEM ADDRESSED Shiga toxin-producing Escherichia coli (STEC), have emerged as food poisoning pathogens which can cause severe diseases in humans. OBJECTIVE The aim of this study was to determinate the serotypes and virulence genes of STEC strains isolated from sheep in Spain, with the purpose of determining whether sheep represent a potential source of STEC pathogenic for humans. METHODS AND APPROACH Faecal swabs obtained from 697 healthy lambs on 35 flocks in Spain during the years 2000 and 2001 were examined for STEC using phenotypic (Vero cells) and genotypic (PCR) methods. RESULTS STEC O157:H7 strains were isolated from seven (1%) animals in six flocks, whereas non-O157 STEC strains were isolated from 246 (35%) lambs in 33 flocks. A total of 253 ovine STEC strains were identified in this study. PCR showed that 110 (43%) strains carried stx(1) genes, 10 (4%) possessed stx(2) genes and 133 (53%) both stx(1) and stx(2). Enterohaemolysin (ehxA) and intimin (eae) virulence genes were detected in 120 (47%) and in 9 (4%) of the STEC strains. STEC strains belonged to 22 O serogroups and 44 O:H serotypes. However, 70% were of one of these six serogroups (O6, O91, O117, O128, O146, O166) and 71% belonged to only nine serotypes (O6:H10, O76:H19, O91:H-, O117:H-, O128:H-, O128:H2, O146:H21, O157:H7, O166:H28). A total of 10 new O:H serotypes not previously reported in STEC strains were found in this study. Seven strains of serotype O157:H7 possessed intimin type gamma1, and two strains of serotype O156:H- had the new intimin zeta. STEC O157:H7 strains were phage types 54 (four strains), 34 (two strains) and 14 (one strain). CONCLUSIONS This study confirms that healthy sheep are a major reservoir of STEC pathogenic for humans. However, because the eae gene is present only in a very small proportion of ovine non-O157 STEC, most ovine strains may be less pathogenic.


BMC Microbiology | 2005

Serotypes, intimin variants and other virulence factors of eae positive Escherichia coli strains isolated from healthy cattle in Switzerland. Identification of a new intimin variant gene (eae-η2)

Miguel Blanco; Sandra Schumacher; Taurai Tasara; Claudio Zweifel; Jesús E. Blanco; Ghizlane Dahbi; Jorge Blanco; Roger Stephan

BackgroundEnteropathogenic Escherichia coli (EPEC) and Shigatoxin-producing Escherichia coli (STEC) share the ability to introduce attaching-and-effacing (A/E) lesions on intestinal cells. The genetic determinants for the production of A/E lesions are located on the locus of enterocyte effacement (LEE), a pathogenicity island that also contains the genes encoding intimin (eae). This study reports information on the occurrence of eae positive E. coli carried by healthy cattle at the point of slaughter, and on serotypes, intimin variants, and further virulence factors of isolated EPEC and STEC strains.ResultsOf 51 eae positive bovine E. coli strains, 59% were classified as EPEC and 41% as STEC. EPEC strains belonged to 18 O:H serotypes, six strains to typical EPEC serogroups. EPEC strains harbored a variety of intimin variants with eae-β1 being most frequently found. Moreover, nine EPEC strains harbored ast A (EAST1), seven bfpA (bundlin), and only one strain was positive for the EAF plasmid. We have identified a new intimin gene (η2) in three bovine bfpA and astA-positive EPEC strains of serotype ONT:H45. STEC strains belonged to seven O:H serotypes with one serotype (O103:H2) accounting for 48% of the strains. The majority of bovine STEC strains (90%) belonged to five serotypes previously reported in association with hemolytic uremic syndrom (HUS), including one O157:H7 STEC strain. STEC strains harbored four intimin variants with eae-ε1 and eae-γ1 being most frequently found. Moreover, the majority of STEC strains carried only stx 1 genes (13 strains), and was positive for ehxA (18 strains) encoding for Enterohemolysin. Four STEC strains showed a virulence pattern characteristic of highly virulent human strains (stx 2 and eae positive).ConclusionOur data confirm that ruminants are an important source of serologically and genetically diverse intimin-harboring E. coli strains. Moreover, cattle have not only to be considered as important asymptomatic carriers of O157 STEC but can also be a reservoir of EPEC and eae positive non-O157 STEC, which are described in association with human diseases.


Journal of Antimicrobial Chemotherapy | 2011

National survey of Escherichia coli causing extraintestinal infections reveals the spread of drug-resistant clonal groups O25b:H4-B2-ST131, O15:H1-D-ST393 and CGA-D-ST69 with high virulence gene content in Spain

Jorge Blanco; Azucena Mora; Rosalía Mamani; Cecilia López; Miguel Blanco; Ghizlane Dahbi; Alexandra Herrera; Jesús E. Blanco; María del Pilar León-Castro Alonso; Fernando García-Garrote; Fernando Chaves; María Ángeles Orellana; Luis Martínez-Martínez; Jorge Calvo; Guillem Prats; María Nieves Larrosa; Juan José González-López; Lorena López-Cerero; Jesús Rodríguez-Baño; Álvaro Pascual

OBJECTIVES To evaluate the current prevalence of the three clonal groups O25b:H4-B2-ST131, O15:H1-D-ST393 and CGA-D-ST69 (where ST stands for sequence type) among Escherichia coli isolates causing extraintestinal infections in Spain and to characterize their virulence background, 500 consecutive non-duplicate E. coli isolates causing extraintestinal infections were analysed. METHODS The 500 isolates were collected during February 2009 from five hospitals in different Spanish regions. Phylogenetic groups, STs, serotypes, virulence genes, PFGE profiles, antimicrobial resistance and extended-spectrum β-lactamase (ESBL) enzymes were determined. RESULTS The three clonal groups accounted for 19% of the 500 isolates. Furthermore, they accounted for 37% of the isolates exhibiting trimethoprim/sulfamethoxazole plus ciprofloxacin resistance, 34% of aminoglycoside-resistant isolates and 30% of multidrug-resistant isolates. Clonal group ST131 was the most prevalent, and accounted for 12% of isolates overall and for 23% of multidrug-resistant isolates. The ST131 isolates exhibited a significantly higher virulence score (mean of virulence genes 8.1) compared with the ST393 (6.0) and ST69 (5.4) isolates. The prevalence of ESBL-producing isolates was 7%. Six (10%) of the 59 ST131 isolates were positive for CTX-M-15 and one (6%) of the 16 ST393 isolates was positive for CTX-M-14, whereas none of the 22 ST69 isolates produced ESBL enzymes. CONCLUSIONS The three clonal groups investigated accounted for 30% of the multidrug-resistant isolates, which gives evidence of an important clonal component in the emergence of resistances among extraintestinal pathogenic E. coli. Notably, a single high virulence clonal group (O25b:H4-B2-ST131) causes approximately 1 in every 10 extraintestinal infections in Spain, representing an important public health threat. A new variant of the ST131 clonal group, which is non-ESBL-producing but trimethoprim/sulfamethoxazole resistant and with high virulence content, is reported.


Microbial Pathogenesis | 2008

Correlation between virulence factors and in vitro biofilm formation by Escherichia coli strains.

Plínio Naves; Gema del Prado; Lorena Huelves; Matilde Gracia; Vicente Ruiz; Jorge Blanco; Ghizlane Dahbi; Miguel Blanco; María del Carmen Ponte; Francisco Soriano

The ability of 15 Escherichia coli strains to form biofilms on polystirene plates was studied. The strains were serotyped, and their phenotypic expression of surface virulence factors (VFs), and antibiotic susceptibility was also determined. Moreover, 30 VFs-associated genes were analysed, including 15 adhesins (papC, papG and its three alleles, sfa/focDE, sfaS, focG, afa/draBC, iha, bmaE, gafD, nfaE, fimH, fimAvMT78, agn43, F9 fimbriae and type 3 fimbriae-encoding gene clusters), four toxins (hlyA, cnf1, sat and tsh), four siderophore (iron, fyuA, iutA and iucD), five proctetins/invasion-encoding genes (kpsM II, kpsMT III, K1 kps variant- neuC, traT and ibeA), and the pathogenicity island malX and cvaC. Morphological appearance and thickness of biofilms of two strong and three weak biofilm producers were also studied by confocal laser scanning microscopy (CLSM). Seven strains were classified as strong biofilm producers and the remaining eight strains were regarded as weak biofilm producers. Mannose-resistant haemagglutination was the only phenotypically expressed surface virulence factor more frequently found in the strong biofilm group. Five virulence-associated genes were more common (p<0.05) in strong biofilm producers: papC and papG alleles, sfa/focDE, focG, hlyA and cnf1. CLSM images showed irregular biofilms with projections at the top mainly in strong biofilm.


Applied and Environmental Microbiology | 2010

Recent Emergence of Clonal Group O25b:K1:H4-B2-ST131 ibeA Strains among Escherichia coli Poultry Isolates, Including CTX-M-9-Producing Strains, and Comparison with Clinical Human Isolates

Azucena Mora; Alexandra Herrera; Rosalía Mamani; Cecilia López; María del Pilar León-Castro Alonso; Jesús E. Blanco; Miguel Blanco; Ghizlane Dahbi; Fernando García-Garrote; Julia Pita; Amparo Coira; María Isabel Bernárdez; Jorge Blanco

ABSTRACT To discern the possible spread of the Escherichia coli O25b:H4-ST131 clonal group in poultry and the zoonotic potential of avian strains, we made a retrospective search of our strain collection and compared the findings for those strains with the findings for current strains. Thus, we have characterized a collection of 19 avian O25b:H4-ST131 E. coli strains isolated from 1995 to 2010 which, interestingly, harbored the ibeA gene. Using this virulence gene as a criterion for selection, we compared those 19 avian strains with 33 human O25b:H4-ST131 ibeA-positive E. coli strains obtained from patients with extraintestinal infections (1993 to 2009). All 52 O25b:H4-ST131 ibeA-positive E. coli strains shared the fimH, kpsMII, malX, and usp genes but showed statistically significant differences in nine virulence factors, namely, papGIII, cdtB, sat, and kpsMII K5, which were associated with human strains, and iroN, kpsMII K1, cvaC, iss, and tsh, which were associated with strains of avian origin. The XbaI macrorestriction profiles of the 52 E. coli O25b:H4-ST131 ibeA-positive strains revealed 11 clusters (clusters I to XI) of >85% similarity, with four clusters including strains of human and avian origin. Cluster VII (90.9% similarity) grouped 10 strains (7 avian and 3 human strains) that mostly produced CTX-M-9 and that also shared the same virulence profile. Finally, we compared the macrorestriction profiles of the 12 CTX-M-9-producing O25b:H4-ST131 ibeA strains (7 avian and 5 human strains) identified among the 52 strains with those of 15 human O25b:H4-ST131 CTX-M-14-, CTX-M-15-, and CTX-M-32-producing strains that proved to be negative for ibeA and showed that they clearly differed in the level of similarity from the CTX-M-9-producing strains. In conclusion, E. coli clonal group O25b:H4-ST131 ibeA has recently emerged among avian isolates with the new acquisition of the K1 capsule antigen and includes CTX-M-9-producing strains. This clonal group represents a real zoonotic risk that has crossed the barrier between human and avian hosts.


BMC Microbiology | 2007

Serotypes, virulence genes and intimin types of Shiga toxin (verocytotoxin)-producing Escherichia coli isolates from minced beef in Lugo (Spain) from 1995 through 2003

Azucena Mora; Miguel Blanco; Jesús E. Blanco; Ghizlane Dahbi; Cecilia López; Paula Justel; M. P. Alonso; Aurora Echeita; María Isabel Bernárdez; Enrique A. González; Jorge Blanco

BackgroundShiga toxin-producing Escherichia coli (STEC) have emerged as pathogens that can cause food-borne infections and severe and potentially fatal illnesses in humans, such as haemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS). In Spain, like in many other countries, STEC strains have been frequently isolated from ruminants, and represent a significant cause of sporadic cases of human infection. In view of the lack of data on STEC isolated from food in Spain, the objectives of this study were to determine the level of microbiological contamination and the prevalence of STEC O157:H7 and non-O157 in a large sampling of minced beef collected from 30 local stores in Lugo city between 1995 and 2003. Also to establish if those STEC isolated from food possessed the same virulence profiles as STEC strains causing human infections.ResultsSTEC were detected in 95 (12%) of the 785 minced beef samples tested. STEC O157:H7 was isolated from eight (1.0%) samples and non-O157 STEC from 90 (11%) samples. Ninety-six STEC isolates were further characterized by PCR and serotyping. PCR showed that 28 (29%) isolates carried stx1 genes, 49 (51%) possessed stx2 genes, and 19 (20%) both stx1 and stx2. Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 43 (45%) and in 25 (26%) of the isolates, respectively. Typing of the eae variants detected four types: γ1 (nine isolates), β1 (eight isolates), ε1 (three isolates), and θ (two isolates). The majority (68%) of STEC isolates belonged to serotypes previously detected in human STEC and 38% to serotypes associated with STEC isolated from patients with HUS. Ten new serotypes not previously described in raw beef products were also detected. The highly virulent seropathotypes O26:H11 stx1eae-β1, O157:H7 stx1stx2eae-γ1 and O157:H7 stx2eae-γ1, which are the most frequently observed among STEC causing human infections in Spain, were detected in 10 of the 96 STEC isolates. Furthermore, phage typing of STEC O157:H7 isolates showed that the majority (seven of eight isolates) belonged to the main phage types previously detected in STEC O157:H7 strains associated with severe human illnesses.ConclusionThe results of this study do not differ greatly from those reported in other countries with regard to prevalence of O157 and non-O157 STEC in minced beef. As we suspected, serotypes different from O157:H7 also play an important role in food contamination in Spain, including the highly virulent seropathotype O26:H11 stx1eae-β1. Thus, our data confirm minced beef in the city of Lugo as vehicles of highly pathogenic STEC. This requires that control measures to be introduced and implemented to increase the safety of minced beef.

Collaboration


Dive into the Ghizlane Dahbi's collaboration.

Top Co-Authors

Avatar

Jorge Blanco

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Azucena Mora

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Miguel Blanco

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Jesús E. Blanco

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Cecilia López

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Enrique A. González

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Rosalía Mamani

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Alexandra Herrera

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

María Isabel Bernárdez

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Juan Marzoa

University of Santiago de Compostela

View shared research outputs
Researchain Logo
Decentralizing Knowledge