Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecília M. P. Rodrigues is active.

Publication


Featured researches published by Cecília M. P. Rodrigues.


Cell Death & Differentiation | 2009

Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes

Lorenzo Galluzzi; Stuart A. Aaronson; John M. Abrams; Emad S. Alnemri; David W. Andrews; Eric H. Baehrecke; Nicolas G. Bazan; Mikhail V. Blagosklonny; Klas Blomgren; Christoph Borner; Dale E. Bredesen; Catherine Brenner; Maria Castedo; John A. Cidlowski; Aaron Ciechanover; Gerald M. Cohen; V De Laurenzi; R De Maria; Mohanish Deshmukh; Brian David Dynlacht; Wafik S. El-Deiry; Richard A. Flavell; Simone Fulda; Carmen Garrido; Pierre Golstein; Marie Lise Gougeon; Douglas R. Green; Hinrich Gronemeyer; György Hajnóczky; J. M. Hardwick

Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.


Journal of Clinical Investigation | 1998

A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation.

Cecília M. P. Rodrigues; Guangsheng Fan; Xiaoming Ma; Betsy T. Kren; Clifford J. Steer

The hydrophilic bile salt ursodeoxycholic acid (UDCA) protects against the membrane-damaging effects associated with hydrophobic bile acids. This study was undertaken to (a) determine if UDCA inhibits apoptosis from deoxycholic acid (DCA), as well as from ethanol, TGF-beta1, Fas ligand, and okadaic acid; and to (b) determine whether mitochondrial membrane perturbation is modulated by UDCA. DCA induced significant hepatocyte apoptosis in vivo and in isolated hepatocytes determined by terminal transferase-mediated dUTP-digoxigenin nick end-labeling assay and nuclear staining, respectively (P < 0.001). Apoptosis in isolated rat hepatocytes increased 12-fold after incubation with 0.5% ethanol (P < 0.001). HuH-7 cells exhibited increased apoptosis with 1 nM TGF-beta1 (P < 0. 001) or DCA at >/= 100 microM (P < 0.001), as did Hep G2 cells after incubation with anti-Fas antibody (P < 0.001). Finally, incubation with okadaic acid induced significant apoptosis in HuH-7, Saos-2, Cos-7, and HeLa cells. Coadministration of UDCA with each of the apoptosis-inducing agents was associated with a 50-100% inhibition of apoptotic changes (P < 0.001) in all the cell types. Also, UDCA reduced the mitochondrial membrane permeability transition (MPT) in isolated mitochondria associated with both DCA and phenylarsine oxide by > 40 and 50%, respectively (P < 0.001). FACS(R) analysis revealed that the apoptosis-inducing agents decreased the mitochondrial transmembrane potential and increased reactive oxygen species production (P < 0.05). Coadministration of UDCA was associated with significant prevention of mitochondrial membrane alterations in all cell types. The results suggest that UDCA plays a central role in modulating the apoptotic threshold in both hepatocytes and nonliver cells, and inhibition of MPT is at least one pathway by which UDCA protects against apoptosis.


The American Journal of Gastroenterology | 2004

Hepatocyte apoptosis, expression of death receptors, and activation of NF-κB in the liver of nonalcoholic and alcoholic steatohepatitis patients

Paulo S. Ribeiro; Helena Cortez-Pinto; Susana Solá; Rui E. Castro; Rita M. Ramalho; A. Baptista; Miguel Carneiro de Moura; M. Camilo; Cecília M. P. Rodrigues

OBJECTIVES:The increasing incidence of nonalcoholic (NASH) and alcoholic steatohepatitis (ASH), associated with lack of effective treatment, has prompted intensive studies on disease pathogenesis. Apoptosis is recognized as common in liver injury and may also contribute to tissue inflammation, fibrogenesis, and development of cirrhosis. In this study, we identified mechanisms of apoptosis induction in human steatohepatitis, and evaluated potential associations between apoptosis, liver pathology, and clinical presentation in NASH and ASH.METHODS:Hepatocyte apoptosis was evaluated by the TUNEL assay in 20 patients with NASH (all ambulatory), 40 with ASH (20 ambulatory, 20 hospitalized), and 20 controls. Liver biopsies were also graded for inflammation and fibrosis. Immunohistochemistry was performed for death receptors (Fas and TNF-R1), activated caspase-3, NF-κB p65, antiapoptotic Bcl-2 protein, and uncoupling protein 2 (UCP-2).RESULTS:TUNEL-positive hepatocytes were markedly increased in NASH (p < 0.05) and ASH (p < 0.01). Similar results were obtained for activated caspase-3, confirming the occurrence of apoptosis. The Fas receptor was upregulated in ASH, especially in hospitalized patients (p < 0.01), whereas TNF-R1 was expressed both in NASH and ASH (p < 0.01). In addition, patients with ASH showed a remarkable expression of active NF-κB, as compared to NASH and controls (p < 0.01). Degrees of inflammation and fibrosis correlated with NF-κB p65 expression, which in turn coincided with apoptosis albeit Bcl-2 and UCP-2 expression.CONCLUSIONS:Liver injury in NASH and ASH is associated with increased hepatocyte apoptosis mediated by death receptors. Further, apoptosis correlates with active NF-κB expression, and disease severity. This potential mechanistic link might provide multiple interesting targets for therapeutic intervention.


BMC Cancer | 2009

Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states.

Aaron L. Sarver; Amy J. French; Pedro M. Borralho; Venugopal Thayanithy; Ann L. Oberg; Kevin A. T. Silverstein; Bruce W. Morlan; Shaun M. Riska; Lisa A. Boardman; Julie M. Cunningham; Subbaya Subramanian; Liang Wang; Tom C. Smyrk; Cecília M. P. Rodrigues; Stephen N. Thibodeau; Clifford J. Steer

BackgroundColon cancer arises from the accumulation of multiple genetic and epigenetic alterations to normal colonic tissue. microRNAs (miRNAs) are small, non-coding regulatory RNAs that post-transcriptionally regulate gene expression. Differential miRNA expression in cancer versus normal tissue is a common event and may be pivotal for tumor onset and progression.MethodsTo identify miRNAs that are differentially expressed in tumors and tumor subtypes, we carried out highly sensitive expression profiling of 735 miRNAs on samples obtained from a statistically powerful set of tumors (n = 80) and normal colon tissue (n = 28) and validated a subset of this data by qRT-PCR.ResultsTumor specimens showed highly significant and large fold change differential expression of the levels of 39 miRNAs including miR-135b, miR-96, miR-182, miR-183, miR-1, and miR-133a, relative to normal colon tissue. Significant differences were also seen in 6 miRNAs including miR-31 and miR-592, in the direct comparison of tumors that were deficient or proficient for mismatch repair. Examination of the genomic regions containing differentially expressed miRNAs revealed that they were also differentially methylated in colon cancer at a far greater rate than would be expected by chance. A network of interactions between these miRNAs and genes associated with colon cancer provided evidence for the role of these miRNAs as oncogenes by attenuation of tumor suppressor genes.ConclusionColon tumors show differential expression of miRNAs depending on mismatch repair status. miRNA expression in colon tumors has an epigenetic component and altered expression that may reflect a reversion to regulatory programs characteristic of undifferentiated proliferative developmental states.


Journal of Biological Chemistry | 2005

Similar Patterns of Mitochondrial Vulnerability and Rescue Induced by Genetic Modification of α-Synuclein, Parkin, and DJ-1 in Caenorhabditis elegans

Rina Ved; Shamol Saha; Beth Westlund; Celine Perier; Lucinda Burnam; Anne Sluder; Marius C. Hoener; Cecília M. P. Rodrigues; Aixa Alfonso; Clifford J. Steer; Leo X. Liu; Serge Przedborski; Benjamin Wolozin

How genetic and environmental factors interact in Parkinson disease is poorly understood. We have now compared the patterns of vulnerability and rescue of Caenorhabditis elegans with genetic modifications of three different genetic factors implicated in Parkinson disease (PD). We observed that expressing α-synuclein, deleting parkin (K08E3.7), or knocking down DJ-1 (B0432.2) or parkin produces similar patterns of pharmacological vulnerability and rescue. C. elegans lines with these genetic changes were more vulnerable than nontransgenic nematodes to mitochondrial complex I inhibitors, including rotenone, fenperoximate, pyridaben, or stigmatellin. In contrast, the genetic manipulations did not increase sensitivity to paraquat, sodium azide, divalent metal ions (Fe(II) or Cu(II)), or etoposide compared with the nontransgenic nematodes. Each of the PD-related lines was also partially rescued by the antioxidant probucol, the mitochondrial complex II activator, d-β-hydroxybutyrate, or the anti-apoptotic bile acid tauroursodeoxycholic acid. Complete protection in all lines was achieved by combining d-β-hydroxybutyrate with tauroursodeoxycholic acid but not with probucol. These results show that diverse PD-related genetic modifications disrupt the mitochondrial function in C. elegans, and they raise the possibility that mitochondrial disruption is a pathway shared in common by many types of familial PD.


Drug Discovery Today | 2013

Delivering the promise of miRNA cancer therapeutics.

Diane M. Pereira; P.M. Rodrigues; Pedro M. Borralho; Cecília M. P. Rodrigues

MicroRNAs (miRNAs) are pivotal post-transcriptional gene expression regulators. These endogenous small non-coding RNAs aberrantly expressed in cancer have significant roles in tumorigenesis and progression. Currently, miRNAs are being pursued as diagnostic and prognostic biomarkers, and as therapeutic tools in cancer. miRNA modulation provides the unique ability to fine-tune multiple genes simultaneously, thereby regulating relevant signaling pathways involved in cell differentiation, proliferation and survival. This unique miRNA feature shifts the traditional one drug one target paradigm to a novel one drug multiple targets paradigm. We herein review in vivo strategies of miRNA modulator (mimic and/or inhibitor) delivery in cancer models, a subject that remains the key challenge to the establishment of this novel class of RNA therapeutics.


Journal of Hepatology | 2013

miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease

Rui E. Castro; D.M.S. Ferreira; M.B. Afonso; Pedro M. Borralho; Mariana Verdelho Machado; Helena Cortez-Pinto; Cecília M. P. Rodrigues

BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of stages from simple steatosis to non-alcoholic steatohepatitis (NASH). However, disease pathogenesis remains largely unknown. microRNA (miRNA or miR) expression has recently been reported to be altered in human NASH, and modulated by ursodeoxycholic acid (UDCA) in the rat liver. Here, we aimed at evaluating the miR-34a/Sirtuin 1(SIRT1)/p53 pro-apoptotic pathway in human NAFLD, and to elucidate its function and modulation by UDCA in the rat liver and primary rat hepatocytes. METHODS Liver biopsies were obtained from NAFLD morbid obese patients undergoing bariatric surgery. Rat livers were collected from animals fed a 0.4% UDCA diets. Primary rat hepatocytes were incubated with bile acids or free fatty acids (FFAs) and transfected with a specific miRNA-34a precursor and/or with a p53 overexpression plasmid. p53 transcriptional activity was assessed by ELISA and target reporter constructs. RESULTS miR-34a, apoptosis and acetylated p53 increased with disease severity, while SIRT1 diminished in the NAFLD liver. UDCA inhibited the miR-34a/SIRT1/p53 pathway in the rat liver in vivo and in primary rat hepatocytes. miR-34a overexpression confirmed its targeting by UDCA, which prevented miR-34a-dependent repression of SIRT1, p53 acetylation, and apoptosis. Augmented apoptosis by FFAs in miR-34a overexpressing cells was also inhibited by UDCA. Finally, p53 overexpression activated miR-34a/SIRT1/p53, which in turn was inhibited by UDCA, via decreased p53 transcriptional activity. CONCLUSIONS Our results support a link between liver cell apoptosis and miR-34a/SIRT1/p53 signaling, specifically modulated by UDCA, and NAFLD severity. Potential endogenous modulators of NAFLD pathogenesis may ultimately provide new tools for therapeutic intervention.


Journal of Lipid Research | 2009

Bile acids: regulation of apoptosis by ursodeoxycholic acid

Joana D. Amaral; Ricardo J.S. Viana; Rita M. Ramalho; Clifford J. Steer; Cecília M. P. Rodrigues

Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimers, Parkinsons, and Huntingtons diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases.


PLOS ONE | 2011

miR-34a Regulates Mouse Neural Stem Cell Differentiation

Márcia M. Aranha; Daniela M. Santos; Susana Solá; Clifford J. Steer; Cecília M. P. Rodrigues

Background MicroRNAs (miRNAs or miRs) participate in the regulation of several biological processes, including cell differentiation. Recently, miR-34a has been implicated in the differentiation of monocyte-derived dendritic cells, human erythroleukemia cells, and mouse embryonic stem cells. In addition, members of the miR-34 family have been identified as direct p53 targets. However, the function of miR-34a in the control of the differentiation program of specific neural cell types remains largely unknown. Here, we investigated the role of miR-34a in regulating mouse neural stem (NS) cell differentiation. Methodology/Principal Findings miR-34a overexpression increased postmitotic neurons and neurite elongation of mouse NS cells, whereas anti-miR-34a had the opposite effect. SIRT1 was identified as a target of miR-34a, which may mediate the effect of miR-34a on neurite elongation. In addition, acetylation of p53 (Lys 379) and p53-DNA binding activity were increased and cell death unchanged after miR-34a overexpression, thus reinforcing the role of p53 during neural differentiation. Interestingly, in conditions where SIRT1 was activated by pharmacologic treatment with resveratrol, miR-34a promoted astrocytic differentiation, through a SIRT1-independent mechanism. Conclusions Our results provide new insight into the molecular mechanisms by which miR-34a modulates neural differentiation, suggesting that miR-34a is required for proper neuronal differentiation, in part, by targeting SIRT1 and modulating p53 activity.


FEBS Journal | 2009

MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells

Pedro M. Borralho; Betsy T. Kren; Rui E. Castro; Isabel B. Moreira da Silva; Clifford J. Steer; Cecília M. P. Rodrigues

MicroRNAs are aberrantly expressed in cancer; microRNA‐143 (miR‐143) is down‐regulated in colon cancer. HCT116 human colorectal cancer cells were used to investigate the biological role of miR‐143. Transient miR‐143 overexpression resulted in an approximate 60% reduction in cell viability. In addition, stable miR‐143 overexpressing cells were selected with G418 and exposed to 5‐fluorouracil. Increased stable expression of miR‐143 was associated with decreased viability and increased cell death after exposure to 5‐fluorouracil. These changes were associated with increased nuclear fragmentation and caspase ‐3, ‐8 and ‐9 activities. In addition, extracellular‐regulated protein kinase 5, nuclear factor‐κB and Bcl‐2 protein expression was down‐regulated by miR‐143, and further reduced by exposure to 5‐fluorouracil. In conclusion, miR‐143 modulates the expression of key proteins involved in the regulation of cell proliferation, death and chemotherapy response. In addition, miR‐143 increases the sensitivity of colon cancer cells to 5‐fluorouracil, probably acting through extracellular‐regulated protein kinase 5/nuclear factor‐κB regulated pathways. Collectively, the data obtained in the present study suggest anti‐proliferative, chemosensitizer and putative pro‐apoptotic roles for miR‐143 in colon cancer.

Collaboration


Dive into the Cecília M. P. Rodrigues's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge