Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joana D. Amaral is active.

Publication


Featured researches published by Joana D. Amaral.


Journal of Lipid Research | 2009

Bile acids: regulation of apoptosis by ursodeoxycholic acid

Joana D. Amaral; Ricardo J.S. Viana; Rita M. Ramalho; Clifford J. Steer; Cecília M. P. Rodrigues

Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimers, Parkinsons, and Huntingtons diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases.


Journal of Biological Chemistry | 2007

p53 Is a Key Molecular Target of Ursodeoxycholic Acid in Regulating Apoptosis

Joana D. Amaral; Rui E. Castro; Susana Solá; Clifford J. Steer; Cecília M. P. Rodrigues

p53 plays an important role in regulating expression of genes that mediate cell cycle progression and/or apoptosis. In addition, we have previously shown that the hydrophilic bile acid ursodeoxycholic acid (UDCA) prevents transforming growth factor β1-induced p53 stabilization and apoptosis in primary rat hepatocytes. Therefore, we hypothesized that p53 may represent an important target in bile acid-induced modulation of apoptosis and cell survival. In this study we demonstrated that UDCA reduces p53 transcriptional activity, thereby preventing its ability to induce Bax expression, mitochondrial translocation, cytochrome c release, and apoptosis in primary rat hepatocytes. More importantly, bile acid inhibition of p53-induced apoptosis was associated with decreased p53 DNA binding activity. Subcellular localization of p53 was also altered by UDCA. Both events appear to be related with increased association between p53 and its direct repressor, Mdm-2. In conclusion, these results further clarify the antiapoptotic mechanism of UDCA and suggest that modulation of Mdm-2/p53 interaction is a prime target for this bile acid.


Hepatology | 2005

Nuclear translocation of UDCA by the glucocorticoid receptor is required to reduce TGF-β1–induced apoptosis in rat hepatocytes†

Susana Solá; Joana D. Amaral; Rui E. Castro; Rita M. Ramalho; Pedro M. Borralho; Betsy T. Kren; Hirotoshi Tanaka; Cj Steer; Cecília M. P. Rodrigues

Ursodeoxycholic acid (UDCA) inhibits classical mitochondrial pathways of apoptosis by either directly stabilizing mitochondrial membranes or modulating specific upstream targets. Furthermore, UDCA regulates apoptosis‐related genes from transforming growth factor β1 (TGF‐β1)–induced hepatocyte apoptosis by a nuclear steroid receptor (NSR)–dependent mechanism. In this study, we further investigated the potential role of the glucocorticoid receptor (GR) in the antiapoptotic function of UDCA. Our results with short interference RNA (siRNA) technology confirmed that UDCA significantly reduces TGF‐β1–induced apoptosis of primary rat hepatocytes through a GR‐dependent effect. Immunoprecipitation assays and confocal microscopy showed that UDCA enhanced free GR levels with subsequent GR nuclear translocation. Interestingly, when a carboxy‐terminus deleted form of GR was used, UDCA no longer increased free GR and/or GR translocation, nor did it protect against TGF‐β1–induced apoptosis. In co‐transfection experiments with GR response element reporter and overexpression constructs, UDCA did not enhance the transactivation of GR with TGF‐β1. Finally, using a flourescently labeled UDCA molecule, the bile acid appeared diffuse in the cytosol but was aggregated in the nucleus of hepatocytes. Both siRNA assays and transfection experiments with either wild‐type or mutant forms of GR showed that nuclear trafficking occurs through a GR‐dependent mechanism. In conclusion, these results further clarify the antiapoptotic mechanism(s) of UDCA and suggest that GR is crucial for the nuclear translocation of this bile acid for reducing apoptosis. (HEPATOLOGY 2005;42:925–934.)


BMC Genomics | 2013

Efficient recovery of proteins from multiple source samples after trizol® or trizol®LS RNA extraction and long-term storage

André E. S. Simões; Diane M. Pereira; Joana D. Amaral; Ana Nunes; Sofia E. Gomes; P.M. Rodrigues; Adrian C. Lo; Rudi D'Hooge; Clifford J. Steer; Stephen N. Thibodeau; Pedro M. Borralho; Cecília M. P. Rodrigues

BackgroundSimultaneous isolation of nucleic acids and proteins from a single biological sample facilitates meaningful data interpretation and reduces time, cost and sampling errors. This is particularly relevant for rare human and animal specimens, often scarce, and/or irreplaceable. TRIzol® and TRIzol®LS are suitable for simultaneous isolation of RNA, DNA and proteins from the same biological sample. These reagents are widely used for RNA and/or DNA isolation, while reports on their use for protein extraction are limited, attributable to technical difficulties in protein solubilisation.ResultsTRIzol®LS was used for RNA isolation from 284 human colon cancer samples, including normal colon mucosa, tubulovillous adenomas, and colon carcinomas with proficient and deficient mismatch repair system. TRIzol® was used for RNA isolation from human colon cancer cells, from brains of transgenic Alzheimer’s disease mice model, and from cultured mouse cortical neurons. Following RNA extraction, the TRIzol®-chloroform fractions from human colon cancer samples and from mouse hippocampus and frontal cortex were stored for 2 years and 3 months, respectively, at −80°C until used for protein isolation.Simple modifications to the TRIzol® manufacturer’s protocol, including Urea:SDS solubilization and sonication, allowed improved protein recovery yield compared to the TRIzol® manufacturer’s protocol. Following SDS-PAGE and Ponceau and Coomassie staining, recovered proteins displayed wide molecular weight range and staining pattern comparable to those obtainable with commonly used protein extraction protocols. We also show that nuclear and cytosolic proteins can be easily extracted and detected by immunoblotting, and that posttranslational modifications, such as protein phosphorylation, are detectable in proteins recovered from TRIzol®-chloroform fractions stored for up to 2 years at −80°C.ConclusionsWe provide a novel approach to improve protein recovery from samples processed for nucleic acid extraction with TRIzol® and TRIzol®LS compared to the manufacturer`s protocol, allowing downstream immunoblotting and evaluation of steady-state relative protein expression levels. The method was validated in large sets of samples from multiple sources, including human colon cancer and brains of transgenic Alzheimer’s disease mice model, stored in TRIzol®-chloroform for up to two years. Collectively, we provide a faster and cheaper alternative to the TRIzol® manufacturer`s protein extraction protocol, illustrating the high relevance, and wide applicability, of the present protein isolation method for the immunoblot evaluation of steady-state relative protein expression levels in samples from multiple sources, and following prolonged storage.


Current Pharmaceutical Design | 2010

Targeting the p53 Pathway of Apoptosis

Joana D. Amaral; Joana M. Xavier; Clifford J. Steer; Cecília M. P. Rodrigues

The tumor suppressor protein, p53 is regarded as a key player in tumor suppression, as it promotes growth arrest, apoptosis and cellular senescence, while also blocking angiogenesis. The plethora of mechanisms underlying the p53 efficient death response involves transcriptional activation or repression of target genes, as well as the recently identified microRNAs, and transcription-independent functions. Pathological conditions such as cancer, neurodegeneration, ischemia, cholestasis or atherosclerosis are all strongly associated with deregulated levels of apoptosis in which p53 dysfunction has a prominent role. The effect of targeting cell death signaling proteins has been established in preclinical models of human diseases. In this regard, therapeutic strategies aimed at reactivation of p53 in tumors emerge as a promising approach for the treatment of cancer patients, as well as chemical inhibitors of p53 that may prove effective in suppressing disorders associated with widespread p53 activation. This review highlights recent developments of p53-induced apoptosis in human diseases. In addition, we will discuss controversies arising from the double-edge sword of targeting p53 in disease. Finally, ursodeoxycholic acid (UDCA), an endogenous bile acid used to treat cholestatic liver diseases, was recently described as a fine modulator of the complex control of p53 by Mdm-2. We will also review recent therapeutic strategies and clinical applications of targeted agents, and their progress in drug lead discovery, with particular emphasis on the potential use of UDCA.


Trends in Molecular Medicine | 2009

p53 and the regulation of hepatocyte apoptosis: implications for disease pathogenesis

Joana D. Amaral; Rui E. Castro; Clifford J. Steer; Cecília M. P. Rodrigues

The interplay between p53 and apoptosis in diseases such as cancer, neurodegeneration, ischemia and atherosclerosis underscores the need to understand the complexity of p53 networks. Here, we highlight recent studies of p53-induced apoptosis in human diseases, with a focus on the modulation of liver cell apoptosis. In addition, recent work has provided new insights into mechanisms underlying the antiapoptotic functions of the endogenous bile acid ursodeoxycholic acid (UDCA), suggesting that the finely tuned, complex control of p53 by Mdm2 is a key step in the UDCA modulation of deregulated, p53-triggered apoptosis. The effect of targeting cell death signaling proteins has been established in preclinical models of human diseases. Finally, we review recent therapeutic strategies and clinical applications of targeted agents, with a particular emphasis on the potential use of UDCA.


Bioorganic & Medicinal Chemistry | 2014

Synthesis and evaluation of spiroisoxazoline oxindoles as anticancer agents.

Carlos Ribeiro; Joana D. Amaral; Cecília M. P. Rodrigues; Rui Moreira; Maria M. M. Santos

Restoring p53 levels through disruption of p53-MDM2 interaction has been proved to be a valuable approach in fighting cancer. We herein report the synthesis and evaluation of eighteen spiroisoxazoline oxindoles derivatives as p53-MDM2 interaction inhibitors. Seven compounds showed an antiproliferative profile superior to the p53-MDM2 interaction inhibitor nutlin-3, and induced cell death by apoptosis. Moreover, proof-of-concept was demonstrated by inhibition of the interaction between p53 and MDM2 in a live-cell bimolecular fluorescence complementation assay.


Neurobiology of Aging | 2015

Amyloid-β pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after disease onset

Pedro A. Dionísio; Joana D. Amaral; Maria F. Ribeiro; Adrian C. Lo; Rudi D'Hooge; Cecília M. P. Rodrigues

Alzheimers disease (AD) is a neurodegenerative disorder hallmarked by the accumulation of extracellular amyloid-β (Aβ) peptide and intraneuronal hyperphosphorylated tau, as well as chronic neuroinflammation. Tauroursodeoxycholic acid (TUDCA) is an endogenous anti-apoptotic bile acid with potent neuroprotective properties in several experimental models of AD. We have previously reported the therapeutic efficacy of TUDCA treatment before amyloid plaque deposition in APP/PS1 double-transgenic mice. In the present study, we evaluated the protective effects of TUDCA when administrated after the onset of amyloid pathology. APP/PS1 transgenic mice with 7 months of age were injected intraperitoneally with TUDCA (500 mg/kg) every 3 days for 3 months. TUDCA treatment significantly attenuated Aβ deposition in the brain, with a concomitant decrease in Aβ₁₋₄₀ and Aβ₁₋₄₂ levels. The amyloidogenic processing of amyloid precursor protein was also reduced, indicating that TUDCA interferes with Aβ production. In addition, TUDCA abrogated GSK3β hyperactivity, which is highly implicated in tau hyperphosphorylation and glial activation. This effect was likely dependent on the specific activation of the upstream kinase, Akt. Finally, TUDCA treatment decreased glial activation and reduced proinflammatory cytokine messenger RNA expression, while partially rescuing synaptic loss. Overall, our results suggest that TUDCA is a promising therapeutic strategy not only for prevention but also for treatment of AD after disease onset.


Neurobiology of Aging | 2013

Tauroursodeoxycholic acid suppresses amyloid β-induced synaptic toxicity in vitro and in APP/PS1 mice.

Rita M. Ramalho; Ana Nunes; Raquel B. Dias; Joana D. Amaral; Adrian C. Lo; Rudi D'Hooge; Ana M. Sebastião; Cecília M. P. Rodrigues

Synapses are considered the earliest site of Alzheimers disease (AD) pathology, where synapse density is reduced, and synaptic loss is highly correlated with cognitive impairment. Tauroursodeoxycholic acid (TUDCA) has been shown to be neuroprotective in several models of AD, including neuronal exposure to amyloid β (Aβ) and amyloid precursor protein (APP)/presenilin 1 (PS1) double-transgenic mice. Here, we show that TUDCA modulates synaptic deficits induced by Aβ in vitro. Specifically, TUDCA reduced the downregulation of the postsynaptic marker postsynaptic density-95 (PSD-95) and the decrease in spontaneous miniature excitatory postsynaptic currents (mEPSCs) frequency, while increasing the number of dendritic spines. This contributed to the induction of more robust and synaptically efficient neurons, reflected in inhibition of neuronal death. In vivo, TUDCA treatment of APP/PS1 mice abrogated the decrease in PSD-95 reactivity in the hippocampus. Taken together, these results expand the neuroprotective role of TUDCA to a synaptic level, further supporting the use of this molecule as a potential therapeutic strategy for the prevention and treatment of AD.


Cell Death and Disease | 2016

Activation of necroptosis in human and experimental cholestasis

M.B. Afonso; P.M. Rodrigues; A.L. Simão; Dimitry Ofengeim; Tânia Carvalho; Joana D. Amaral; Maria Manuela Gaspar; Helena Cortez-Pinto; Rui E. Castro; Junying Yuan; Cecília M. P. Rodrigues

Cholestasis encompasses liver injury and inflammation. Necroptosis, a necrotic cell death pathway regulated by receptor-interacting protein (RIP) 3, may mediate cell death and inflammation in the liver. We aimed to investigate the role of necroptosis in mediating deleterious processes associated with cholestatic liver disease. Hallmarks of necroptosis were evaluated in liver biopsies of primary biliary cholangitis (PBC) patients and in wild-type and RIP3-deficient (RIP3−/−) mice subjected to common bile duct ligation (BDL). The functional link between RIP3, heme oxygenase-1 (HO-1) and antioxidant response was investigated in vivo after BDL and in vitro. We demonstrate increased RIP3 expression and mixed lineage kinase domain-like protein (MLKL) phosphorylation in liver samples of human PBC patients, coincident with thioflavin T labeling, suggesting activation of necroptosis. BDL resulted in evident hallmarks of necroptosis, concomitant with progressive bile duct hyperplasia, multifocal necrosis, fibrosis and inflammation. MLKL phosphorylation was increased and insoluble aggregates of RIP3, MLKL and RIP1 formed in BLD liver tissue samples. Furthermore, RIP3 deficiency blocked BDL-induced necroinflammation at 3 and 14 days post-BDL. Serum hepatic enzymes, fibrogenic liver gene expression and oxidative stress decreased in RIP3−/− mice at 3 days after BDL. However, at 14 days, cholestasis aggravated and fibrosis was not halted. RIP3 deficiency further associated with increased hepatic expression of HO-1 and accumulation of iron in BDL mice. The functional link between HO-1 activity and bile acid toxicity was established in RIP3-deficient primary hepatocytes. Necroptosis is triggered in PBC patients and mediates hepatic necroinflammation in BDL-induced acute cholestasis. Targeting necroptosis may represent a therapeutic strategy for acute cholestasis, although complementary approaches may be required to control progression of chronic cholestatic liver disease.

Collaboration


Dive into the Joana D. Amaral's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susana Solá

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian C. Lo

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge