Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecilia S. Lindestam Arlehamn is active.

Publication


Featured researches published by Cecilia S. Lindestam Arlehamn.


Immunity | 2013

Human Circulating PD-1+CXCR3−CXCR5+ Memory Tfh Cells Are Highly Functional and Correlate with Broadly Neutralizing HIV Antibody Responses

Michela Locci; Colin Havenar-Daughton; Elise Landais; Jennifer E. Wu; Mark A. Kroenke; Cecilia S. Lindestam Arlehamn; Laura F. Su; Rafael Cubas; Mark M. Davis; Alessandro Sette; Elias K. Haddad; Pascal Poignard; Shane Crotty

The vast majority of currently licensed human vaccines work on the basis of long-term protective antibody responses. It is now conceivable that an antibody-dependent HIV vaccine might be possible, given the discovery of HIV broadly neutralizing antibodies (bnAbs) in some HIV-infected individuals. However, these antibodies are difficult to develop and have characteristics indicative of a high degree of affinity maturation in germinal centers (GCs). CD4⁺ T follicular helper (Tfh) cells are specialized for B cell help and necessary for GCs. Therefore, the development of HIV bnAbs might depend on Tfh cells. Here, we identified in normal individuals a subpopulation of circulating memory PD-1⁺CXCR5⁺CD4⁺ T cells that are resting memory cells most related to bona fide GC Tfh cells by gene expression profile, cytokine profile, and functional properties. Importantly, the frequency of these cells correlated with the development of bnAbs against HIV in a large cohort of HIV⁺ individuals.


PLOS Pathogens | 2013

Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset.

Cecilia S. Lindestam Arlehamn; Anna Gerasimova; Federico Mele; Ryan Henderson; Justine Swann; Jason Greenbaum; Yohan Kim; John Sidney; Eddie A. James; Randy Taplitz; Denise M. McKinney; William W. Kwok; Howard M. Grey; Federica Sallusto; Bjoern Peters; Alessandro Sette

An understanding of the immunological footprint of Mycobacterium tuberculosis (MTB) CD4 T cell recognition is still incomplete. Here we report that human Th1 cells specific for MTB are largely contained in a CXCR3+CCR6+ memory subset and highly focused on three broadly immunodominant antigenic islands, all related to bacterial secretion systems. Our results refute the notion that secreted antigens act as a decoy, since both secreted proteins and proteins comprising the secretion system itself are targeted by a fully functional T cell response. In addition, several novel T cell antigens were identified which can be of potential diagnostic use, or as vaccine antigens. These results underline the power of a truly unbiased, genome-wide, analysis of CD4 MTB recognition based on the combined use of epitope predictions, high throughput ELISPOT, and T cell libraries using PBMCs from individuals latently infected with MTB.


Journal of Biological Chemistry | 2010

The role of potassium in inflammasome activation by bacteria

Cecilia S. Lindestam Arlehamn; Virginie Pétrilli; Olaf Gross; Jürg Tschopp; Thomas J. Evans

Many Gram-negative bacteria possess a type III secretion system (TTSS¶) that can activate the NLRC4 inflammasome, process caspase-1 and lead to secretion of mature IL-1β. This is dependent on the presence of intracellular flagellin. Previous reports have suggested that this activation is independent of extracellular K+ and not accompanied by leakage of K+ from the cell, in contrast to activation of the NLRP3 inflammasome. However, non-flagellated strains of Pseudomonas aeruginosa are able to activate NLRC4, suggesting that formation of a pore in the cell membrane by the TTSS apparatus may be sufficient for inflammasome activation. Thus, we set out to determine if extracellular K+ influenced P. aeruginosa inflammasome activation. We found that raising extracellular K+ prevented TTSS NLRC4 activation by the non-flagellated P. aeruginosa strain PA103ΔUΔT at concentrations above 90 mm, higher than those reported to inhibit NLRP3 activation. Infection was accompanied by efflux of K+ from a minority of cells as determined using the K+-sensitive fluorophore PBFI, but no formation of a leaky pore. We obtained exactly the same results following infection with Salmonella typhimurium, previously described as independent of extracellular K+. The inhibitory effect of raised extracellular K+ on NLRC4 activation thus reflects a requirement for a decrease in intracellular K+ for this inflammasome component as well as that described for NLRP3.


Nature | 2017

Identifying specificity groups in the T cell receptor repertoire

Jacob Glanville; Huang Huang; Allison Nau; Olivia Hatton; Lisa E. Wagar; Florian Rubelt; Xuhuai Ji; Arnold Han; Sheri M. Krams; Christina Pettus; Nikhil Haas; Cecilia S. Lindestam Arlehamn; Alessandro Sette; Scott D. Boyd; Thomas J. Scriba; Olivia M. Martinez; Mark M. Davis

T cell receptor (TCR) sequences are very diverse, with many more possible sequence combinations than T cells in any one individual. Here we define the minimal requirements for TCR antigen specificity, through an analysis of TCR sequences using a panel of peptide and major histocompatibility complex (pMHC)-tetramer-sorted cells and structural data. From this analysis we developed an algorithm that we term GLIPH (grouping of lymphocyte interactions by paratope hotspots) to cluster TCRs with a high probability of sharing specificity owing to both conserved motifs and global similarity of complementarity-determining region 3 (CDR3) sequences. We show that GLIPH can reliably group TCRs of common specificity from different donors, and that conserved CDR3 motifs help to define the TCR clusters that are often contact points with the antigenic peptides. As an independent validation, we analysed 5,711 TCRβ chain sequences from reactive CD4 T cells from 22 individuals with latent Mycobacterium tuberculosis infection. We found 141 TCR specificity groups, including 16 distinct groups containing TCRs from multiple individuals. These TCR groups typically shared HLA alleles, allowing prediction of the likely HLA restriction, and a large number of M. tuberculosis T cell epitopes enabled us to identify pMHC ligands for all five of the groups tested. Mutagenesis and de novo TCR design confirmed that the GLIPH-identified motifs were critical and sufficient for shared-antigen recognition. Thus the GLIPH algorithm can analyse large numbers of TCR sequences and define TCR specificity groups shared by TCRs and individuals, which should greatly accelerate the analysis of T cell responses and expedite the identification of specific ligands.


Journal of Immunology | 2012

Dissecting Mechanisms of Immunodominance to the Common Tuberculosis Antigens ESAT-6, CFP10, Rv2031c (hspX), Rv2654c (TB7.7), and Rv1038c (EsxJ)

Cecilia S. Lindestam Arlehamn; John Sidney; Ryan Henderson; Jason Greenbaum; Eddie A. James; Magdalini Moutaftsi; Rhea N. Coler; Denise M. McKinney; Daniel Park; Randy Taplitz; William W. Kwok; Howard M. Grey; Bjoern Peters; Alessandro Sette

Diagnosis of tuberculosis often relies on the ex vivo IFN-γ release assays QuantiFERON-TB Gold In-Tube and T-SPOT.TB. However, understanding of the immunological mechanisms underlying their diagnostic use is still incomplete. Accordingly, we investigated T cell responses for the TB Ags included in the these assays and other commonly studied Ags: early secreted antigenic target 6 kDa, culture filtrate protein 10 kDa, Rv2031c, Rv2654c, and Rv1038c. PBMC from latently infected individuals were tested in ex vivo ELISPOT assays with overlapping peptides spanning the entirety of these Ags. We found striking variations in prevalence and magnitude of ex vivo reactivity, with culture filtrate protein 10 kDa being most dominant, followed by early secreted antigenic target 6 kDa and Rv2654c being virtually inactive. Rv2031c and Rv1038c were associated with intermediate patterns of reactivity. Further studies showed that low reactivity was not due to lack of HLA binding peptides, and high reactivity was associated with recognition of a few discrete dominant antigenic regions. Different donors recognized the same core sequence in a given epitope. In some cases, the identified epitopes were restricted by a single specific common HLA molecule (selective restriction), whereas in other cases, promiscuous restriction of the same epitope by multiple HLA molecules was apparent. Definition of the specific restricting HLA allowed to produce tetrameric reagents and showed that epitope-specific T cells recognizing either selectively or promiscuously restricted epitopes were predominantly T effector memory. In conclusion, these results highlight the feasibility of more clearly defined TB diagnostic reagent.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Previously undescribed grass pollen antigens are the major inducers of T helper 2 cytokine-producing T cells in allergic individuals

Véronique Schulten; Jason Greenbaum; Michael Hauser; Denise M. McKinney; John Sidney; Ravi Kolla; Cecilia S. Lindestam Arlehamn; Carla Oseroff; Rapheul Alam; David H. Broide; Fatima Ferreira; Howard M. Grey; Alessandro Sette; Bjoern Peters

T cells play an important role in the pathogenesis of allergic diseases. However, the proteins considered as potential immunogens of allergenic T-cell responses have traditionally been limited to those that induce IgE responses. Timothy grass (TG) pollen is a well-studied inhaled allergen for which major IgE-reactive allergens have also been shown to trigger T helper 2 (Th2) responses. Here we examined whether other TG pollen proteins are recognized by Th2 responses independently of IgE reactivity. A TG pollen extract was analyzed by 2D gel electrophoresis and IgE/IgG immunoblots using pooled sera from allergic donors. Mass spectrometry of selected protein spots in combination with de novo sequencing of the whole TG pollen transcriptome identified 93 previously undescribed proteins for further study, 64 of which were not targeted by IgE. Predicted MHC binding peptides from the previoulsy undescribed TG proteins were screened for T-cell reactivity in peripheral blood mononuclear cells from allergic donors. Strong IL-5 production was detected in response to peptides from several of the previously undescribed proteins, most of which were not targeted by IgE. Responses against the dominant undescribed epitopes were associated with the memory T-cell subset and could even be detected directly ex vivo after Th2 cell enrichment. These findings demonstrate that a combined unbiased transcriptomic, proteomic, and immunomic approach identifies a greatly broadened repertoire of protein antigens targeted by T cells involved in allergy pathogenesis. The discovery of proteins that induce Th2 cells but are not IgE reactive may allow the development of safer immunotherapeutic strategies.


Nature | 2017

T cells from patients with Parkinson’s disease recognize α-synuclein peptides

David Sulzer; Roy N. Alcalay; Francesca Garretti; Lucien J. Cote; Ellen Kanter; Julian Agin-Liebes; Christopher Liong; Curtis McMurtrey; William H. Hildebrand; Xiaobo Mao; Valina L. Dawson; Ted M. Dawson; Carla Oseroff; John Pham; John Sidney; Myles B.C. Dillon; Chelsea Carpenter; Daniela Weiskopf; E. Phillips; S. Mallal; Bjoern Peters; April Frazier; Cecilia S. Lindestam Arlehamn; Alessandro Sette

Genetic studies have shown the association of Parkinson’s disease with alleles of the major histocompatibility complex. Here we show that a defined set of peptides that are derived from α-synuclein, a protein aggregated in Parkinson’s disease, act as antigenic epitopes displayed by these alleles and drive helper and cytotoxic T cell responses in patients with Parkinson’s disease. These responses may explain the association of Parkinson’s disease with specific major histocompatibility complex alleles.Genetic studies associate Parkinson’s disease with alleles of the major histocompatibility complex1–3. We find that a defined set of peptides derived from α-synuclein, a protein aggregated in Parkinson’s disease4, act as antigenic epitopes displayed by these alleles and drive helper and cytotoxic T cell responses in Parkinson’s disease patients. These responses may explain the association of Parkinson’s disease with alleles of the acquired immune system.


eLife | 2015

An open-source computational and data resource to analyze digital maps of immunopeptidomes.

Etienne Caron; Lucia Espona; Daniel J. Kowalewski; Heiko Schuster; Nicola Ternette; Adán Alpízar; Ralf B. Schittenhelm; Sri H. Ramarathinam; Cecilia S. Lindestam Arlehamn; Ching Chiek Koh; Ludovic C. Gillet; Armin Rabsteyn; Pedro Navarro; Sangtae Kim; Henry H N Lam; Theo Sturm; Alessandro Sette; David S. Campbell; Eric W. Deutsch; Robert L. Moritz; Anthony W. Purcell; Hans-Georg Rammensee; Stefan Stevanovic; Ruedi Aebersold

We present a novel mass spectrometry-based high-throughput workflow and an open-source computational and data resource to reproducibly identify and quantify HLA-associated peptides. Collectively, the resources support the generation of HLA allele-specific peptide assay libraries consisting of consensus fragment ion spectra, and the analysis of quantitative digital maps of HLA peptidomes generated from a range of biological sources by SWATH mass spectrometry (MS). This study represents the first community-based effort to develop a robust platform for the reproducible and quantitative measurement of the entire repertoire of peptides presented by HLA molecules, an essential step towards the design of efficient immunotherapies. DOI: http://dx.doi.org/10.7554/eLife.07661.001


Cellular Microbiology | 2011

Pseudomonas aeruginosa pilin activates the inflammasome

Cecilia S. Lindestam Arlehamn; Thomas J. Evans

IL‐1β is produced from inactive pro‐IL‐1β by activation of caspase‐1 brought about by a multi‐subunit protein platform called the inflammasome. Many bacteria can trigger inflammasome activity through flagellin activation of the host protein NLRC4. However, strains of the common human pathogen Pseudomonas aeruginosa lacking flagellin can still activate the inflammasome. We set out to identify what non‐flagellin components could produce this activation. Using mass spectroscopy, we identified an inflammasome‐activating factor from P. aeruginosa as pilin, the major component of the type IV bacterial pilus. Purified pilin introduced into mouse macrophages by liposomal delivery activated caspase‐1 and led to secretion of mature IL‐1β, as did recombinant pilin purified from Escherichia coli. This was dependent on caspase‐1 but not on the host inflammasome proteins NLRC4, NLRP3 or ASC. Mutants of P. aeruginosa strain PA103 lacking pilin did not activate the inflammasome following infection of macrophages with live bacteria. Type III secretion remained intact in the absence of pili, showing this was not due to a lack of effector delivery. Our observations show pilin is a novel activator of the inflammasome in addition to flagellin and the recently described PrgJ protein family, the basal body rod component of the type III apparatus.


Journal of Immunological Methods | 2015

Development and validation of a broad scheme for prediction of HLA class II restricted T cell epitopes.

Sinu Paul; Cecilia S. Lindestam Arlehamn; Thomas J. Scriba; Myles B.C. Dillon; Carla Oseroff; Denise Hinz; Denise M. McKinney; Sebastian Carrasco Pro; John Sidney; Bjoern Peters; Alessandro Sette

Computational prediction of HLA class II restricted T cell epitopes has great significance in many immunological studies including vaccine discovery. In recent years, prediction of HLA class II binding has improved significantly but a strategy to globally predict the most dominant epitopes has not been rigorously defined. Using human immunogenicity data associated with sets of 15-mer peptides overlapping by 10 residues spanning over 30 different allergens and bacterial antigens, and HLA class II binding prediction tools from the Immune Epitope Database and Analysis Resource (IEDB), we optimized a strategy to predict the top epitopes recognized by human populations. The most effective strategy was to select peptides based on predicted median binding percentiles for a set of seven DRB1 and DRB3/4/5 alleles. These results were validated with predictions on a blind set of 15 new allergens and bacterial antigens. We found that the top 21% predicted peptides (based on the predicted binding to seven DRB1 and DRB3/4/5 alleles) were required to capture 50% of the immune response. This corresponded to an IEDB consensus percentile rank of 20.0, which could be used as a universal prediction threshold. Utilizing actual binding data (as opposed to predicted binding data) did not appreciably change the efficacy of global predictions, suggesting that the imperfect predictive capacity is not due to poor algorithm performance, but intrinsic limitations of HLA class II epitope prediction schema based on HLA binding in genetically diverse human populations.

Collaboration


Dive into the Cecilia S. Lindestam Arlehamn's collaboration.

Top Co-Authors

Avatar

Alessandro Sette

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Bjoern Peters

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

John Sidney

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Sinu Paul

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Weiskopf

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Denise M. McKinney

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Jason Greenbaum

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Chelsea Carpenter

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Pandurangan Vijayanand

La Jolla Institute for Allergy and Immunology

View shared research outputs
Researchain Logo
Decentralizing Knowledge