Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sinu Paul is active.

Publication


Featured researches published by Sinu Paul.


Journal of Immunology | 2013

HLA Class I Alleles Are Associated with Peptide-Binding Repertoires of Different Size, Affinity, and Immunogenicity

Sinu Paul; Daniela Weiskopf; Michael A. Angelo; John Sidney; Bjoern Peters; Alessandro Sette

Prediction of HLA binding affinity is widely used to identify candidate T cell epitopes, and an affinity of 500 nM is routinely used as a threshold for peptide selection. However, the fraction (percentage) of peptides predicted to bind with affinities of 500 nM varies by allele. For example, of a large collection of ∼30,000 dengue virus–derived peptides only 0.3% were predicted to bind HLA A*0101, wheras nearly 5% were predicted for A*0201. This striking difference could not be ascribed to variation in accuracy of the algorithms used, as predicted values closely correlated with affinity measured in vitro with purified HLA molecules. These data raised the question whether different alleles would also vary in terms of epitope repertoire size, defined as the number of associated epitopes or, alternatively, whether alleles vary drastically in terms of the affinity threshold associated with immunogenicity. To address this issue, strains of HLA transgenic mice with wide (A*0201), intermediate (B*0702), or narrow (A*0101) repertoires were immunized with peptides of varying binding affinity and relative percentile ranking. The results show that absolute binding capacity is a better predictor of immunogenicity, and analysis of epitopes from the Immune Epitope Database revealed that predictive efficacy is increased using allele-specific affinity thresholds. Finally, we investigated the genetic and structural basis of the phenomenon. Although no stringent correlate was defined, on average HLA B alleles are associated with significantly narrower repertoires than are HLA A alleles.


Journal of Virology | 2015

The Human CD8+ T Cell Responses Induced by a Live Attenuated Tetravalent Dengue Vaccine Are Directed against Highly Conserved Epitopes

Daniela Weiskopf; Michael A. Angelo; Derek J. Bangs; John Sidney; Sinu Paul; Bjoern Peters; Aruna Dharshan De Silva; Janet C. Lindow; Sean A. Diehl; Stephen S. Whitehead; Anna P. Durbin; Beth D. Kirkpatrick; Alessandro Sette

ABSTRACT The incidence of infection with any of the four dengue virus serotypes (DENV1 to -4) has increased dramatically in the last few decades, and the lack of a treatment or vaccine has contributed to significant morbidity and mortality worldwide. A recent comprehensive analysis of the human T cell response against wild-type DENV suggested an human lymphocyte antigen (HLA)-linked protective role for CD8+ T cells. We have collected one-unit blood donations from study participants receiving the monovalent or tetravalent live attenuated DENV vaccine (DLAV), developed by the U.S. National Institutes of Health. Peripheral blood mononuclear cells from these donors were screened in gamma interferon enzyme-linked immunosorbent spot assays with pools of predicted, HLA-matched, class I binding peptides covering the entire DENV proteome. Here, we characterize for the first time CD8+ T cell responses after live attenuated dengue vaccination and show that CD8+ T cell responses in vaccinees were readily detectable and comparable to natural dengue infection. Interestingly, whereas broad responses to structural and nonstructural (NS) proteins were observed after monovalent vaccination, T cell responses following tetravalent vaccination were, dramatically, focused toward the highly conserved NS proteins. Epitopes were highly conserved in a vast variety of field isolates and able to elicit multifunctional T cell responses. Detailed knowledge of the T cell response will contribute to the identification of robust correlates of protection in natural immunity and following vaccination against DENV. IMPORTANCE The development of effective vaccination strategies against dengue virus (DENV) infection and clinically significant disease is a task of high global public health value and significance, while also being a challenge of significant complexity. A recent efficacy trial of the most advanced dengue vaccine candidate, demonstrated only partial protection against all four DENV serotypes, despite three subsequent immunizations and detection of measurable neutralizing antibodies to each serotype in most subjects. These results challenge the hypothesis that seroconversion is the only reliable correlate of protection. Here, we show that CD8+ T cell responses in vaccinees were readily detectable and comparable to natural dengue virus infection. Detailed knowledge of the T cell response may further contribute to the identification of robust correlates of protection in natural immunity and vaccination against DENV.


The Journal of Infectious Diseases | 2015

Human CD8+ T-Cell Responses Against the 4 Dengue Virus Serotypes Are Associated With Distinct Patterns of Protein Targets

Daniela Weiskopf; Cristhiam Cerpas; Michael A. Angelo; Derek J. Bangs; John Sidney; Sinu Paul; Bjoern Peters; Françoise P. Sanches; Cassia G. T. Silvera; Priscilla R. Costa; Esper G. Kallas; Lionel Gresh; Aruna Dharshan De Silva; Angel Balmaseda; Eva Harris; Alessandro Sette

BACKGROUND All 4 dengue virus (DENV) serotypes are now simultaneously circulating worldwide and responsible for up to 400 million human infections each year. Previous studies of CD8(+) T-cell responses in HLA-transgenic mice and human vaccinees demonstrated that the hierarchy of immunodominance among structural versus nonstructural proteins differs as a function of the infecting serotype. This led to the hypothesis that there are intrinsic differences in the serotype-specific reactivity of CD8(+) T-cell responses. METHODS We tested this hypothesis by analyzing serotype-specific CD8(+) T-cell reactivity in naturally infected human donors from Sri Lanka and Nicaragua, using ex vivo interferon γ-specific enzyme-linked immunosorbent spot assays. RESULTS Remarkably similar and clear serotype-specific patterns of immunodominance in both cohorts were identified. Pooling of epitopes that accounted for 90% of the interferon γ response in both cohorts resulted in a global epitope pool. Its reactivity was confirmed in naturally infected donors from Brazil, demonstrating its global applicability. CONCLUSIONS This study provides new insight into differential serotype-specific immunogenicity of DENV proteins. It further provides a potentially valuable tool for future investigations of CD8(+) T-cell responses in the typically small sample volumes available from patients with acute fever and children without requiring prior knowledge of either infecting DENV serotype or HLA type.


Frontiers in Immunology | 2017

The Immune Epitope Database and Analysis Resource in Epitope Discovery and Synthetic Vaccine Design.

Ward Fleri; Sinu Paul; Sandeep Kumar Dhanda; Swapnil Mahajan; Xiaojun Xu; Bjoern Peters; Alessandro Sette

The task of epitope discovery and vaccine design is increasingly reliant on bioinformatics analytic tools and access to depositories of curated data relevant to immune reactions and specific pathogens. The Immune Epitope Database and Analysis Resource (IEDB) was indeed created to assist biomedical researchers in the development of new vaccines, diagnostics, and therapeutics. The Analysis Resource is freely available to all researchers and provides access to a variety of epitope analysis and prediction tools. The tools include validated and benchmarked methods to predict MHC class I and class II binding. The predictions from these tools can be combined with tools predicting antigen processing, TCR recognition, and B cell epitope prediction. In addition, the resource contains a variety of secondary analysis tools that allow the researcher to calculate epitope conservation, population coverage, and other relevant analytic variables. The researcher involved in vaccine design and epitope discovery will also be interested in accessing experimental published data, relevant to the specific indication of interest. The database component of the IEDB contains a vast amount of experimentally derived epitope data that can be queried through a flexible user interface. The IEDB is linked to other pathogen-specific and immunological database resources.


Journal of Immunological Methods | 2015

Development and validation of a broad scheme for prediction of HLA class II restricted T cell epitopes.

Sinu Paul; Cecilia S. Lindestam Arlehamn; Thomas J. Scriba; Myles B.C. Dillon; Carla Oseroff; Denise Hinz; Denise M. McKinney; Sebastian Carrasco Pro; John Sidney; Bjoern Peters; Alessandro Sette

Computational prediction of HLA class II restricted T cell epitopes has great significance in many immunological studies including vaccine discovery. In recent years, prediction of HLA class II binding has improved significantly but a strategy to globally predict the most dominant epitopes has not been rigorously defined. Using human immunogenicity data associated with sets of 15-mer peptides overlapping by 10 residues spanning over 30 different allergens and bacterial antigens, and HLA class II binding prediction tools from the Immune Epitope Database and Analysis Resource (IEDB), we optimized a strategy to predict the top epitopes recognized by human populations. The most effective strategy was to select peptides based on predicted median binding percentiles for a set of seven DRB1 and DRB3/4/5 alleles. These results were validated with predictions on a blind set of 15 new allergens and bacterial antigens. We found that the top 21% predicted peptides (based on the predicted binding to seven DRB1 and DRB3/4/5 alleles) were required to capture 50% of the immune response. This corresponded to an IEDB consensus percentile rank of 20.0, which could be used as a universal prediction threshold. Utilizing actual binding data (as opposed to predicted binding data) did not appreciably change the efficacy of global predictions, suggesting that the imperfect predictive capacity is not due to poor algorithm performance, but intrinsic limitations of HLA class II epitope prediction schema based on HLA binding in genetically diverse human populations.


Journal of Immunology | 2017

NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data

Vanessa Isabell Jurtz; Sinu Paul; Massimo Andreatta; Paolo Marcatili; Bjoern Peters; Morten Nielsen

Cytotoxic T cells are of central importance in the immune system’s response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide–MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes.


PLOS Pathogens | 2016

A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4 T Cell Responses in Healthy M. tuberculosis Infected South Africans.

Cecilia S. Lindestam Arlehamn; Denise M. McKinney; Chelsea Carpenter; Sinu Paul; Virginie Rozot; Edward Makgotlho; Yolande Gregg; Michele van Rooyen; Joel D. Ernst; Mark Hatherill; Willem A. Hanekom; Bjoern Peters; Thomas J. Scriba; Alessandro Sette

We performed a quantitative analysis of the HLA restriction, antigen and epitope specificity of human pathogen specific responses in healthy individuals infected with M. tuberculosis (Mtb), in a South African cohort as a test case. The results estimate the breadth of T cell responses for the first time in the context of an infection and human population setting. We determined the epitope repertoire of eleven representative Mtb antigens and a large panel of previously defined Mtb epitopes. We estimated that our analytic methods detected 50–75% of the total response in a cohort of 63 individuals. As expected, responses were highly heterogeneous, with responses to a total of 125 epitopes detected. The 66 top epitopes provided 80% coverage of the responses identified in our study. Using a panel of 48 HLA class II-transfected antigen-presenting cells, we determined HLA class II restrictions for 278 epitope/donor recognition events (36% of the total). The majority of epitopes were restricted by multiple HLA alleles, and 380 different epitope/HLA combinations comprised less than 30% of the estimated Mtb-specific response. Our results underline the complexity of human T cell responses at a population level. Efforts to capture and characterize this broad and highly HLA promiscuous Mtb-specific T cell epitope repertoire will require significant peptide multiplexing efforts. We show that a comprehensive “megapool” of Mtb peptides captured a large fraction of the Mtb-specific T cells and can be used to characterize this response.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Immunological consequences of intragenus conservation of Mycobacterium tuberculosis T-cell epitopes

Cecilia S. Lindestam Arlehamn; Sinu Paul; Federico Mele; Charlie Huang; Jason Greenbaum; Randi Vita; John Sidney; Bjoern Peters; Federica Sallusto; Alessandro Sette

Significance Mycobacterium tuberculosis (MTB) infection is one of the most common diseases worldwide. The Mycobacteria are a large bacterial family that includes MTB and nontuberculous mycobacteria commonly found in the environment (NTMs). We have shown that non–MTB-infected and non–bacillus Calmette–Guerin-vaccinated individuals nevertheless react to MTB-derived sequences. This reactivity can be explained by conservation of the epitope sequence in NTMs. Thus, the widespread exposure to various species of Mycobacteria influences reactivity to MTB and NTMs. We identified epitopes that are found only in NTMs, allowing dissociation of MTB- versus NTM-specific reactivity. These epitopes, in conjunction with epitopes specific to latent MTB infection, will provide a novel tool to study host–pathogen dynamics in the context of the design and evaluation of MTB vaccines and diagnostics. A previous unbiased genome-wide analysis of CD4 Mycobacterium tuberculosis (MTB) recognition using peripheral blood mononuclear cells from individuals with latent MTB infection (LTBI) or nonexposed healthy controls (HCs) revealed that certain MTB sequences were unexpectedly recognized by HCs. In the present study, it was found that, based on their pattern of reactivity, epitopes could be divided into LTBI-specific, mixed reactivity, and HC-specific categories. This pattern corresponded to sequence conservation in nontuberculous mycobacteria (NTMs), suggesting environmental exposure as an underlying cause of differential reactivity. LTBI-specific epitopes were found to be hyperconserved, as previously reported, whereas the opposite was true for NTM conserved epitopes, suggesting that intragenus conservation also influences host pathogen adaptation. The biological relevance of this observation was demonstrated further by several observations. First, the T cells elicited by MTB/NTM cross-reactive epitopes in HCs were found mainly in a CCR6+CXCR3+ memory subset, similar to findings in LTBI individuals. Thus, both MTB and NTM appear to elicit a phenotypically similar T-cell response. Second, T cells reactive to MTB/NTM-conserved epitopes responded to naturally processed epitopes from MTB and NTMs, whereas T cells reactive to MTB-specific epitopes responded only to MTB. Third, cross-reactivity could be translated to antigen recognition. Several MTB candidate vaccine antigens were cross-reactive, but others were MTB-specific. Finally, NTM-specific epitopes that elicit T cells that recognize NTMs but not MTB were identified. These epitopes can be used to characterize T-cell responses to NTMs, eliminating the confounding factor of MTB cross-recognition and providing insights into vaccine design and evaluation.


Clinical & Developmental Immunology | 2013

Evaluating the immunogenicity of protein drugs by applying in vitro MHC binding data and the immune epitope database and analysis resource.

Sinu Paul; Ravi Kolla; John Sidney; Daniela Weiskopf; Ward Fleri; Yohan Kim; Bjoern Peters; Alessandro Sette

The immune system has evolved to become highly specialized in recognizing and responding to pathogens and foreign molecules. Specifically, the function of HLA class II is to ensure that a sufficient sample of peptides derived from foreign molecules is presented to T cells. This leads to an important concern in human drug development as the possible immunogenicity of biopharmaceuticals, especially those intended for chronic administration, can lead to reduced efficacy and an undesired safety profile for biological therapeutics. As part of this review, we will highlight the molecular basis of antigen presentation as a key step in the induction of T cell responses, emphasizing the events associated with peptide binding to polymorphic and polygenic HLA class II molecules. We will further review methodologies that predict HLA class II binding peptides and candidate epitopes. We will focus on tools provided by the Immune Epitope Database and Analysis Resource, discussing the basic features of different prediction methods, the objective evaluation of prediction quality, and general guidelines for practical use of these tools. Finally the use, advantages, and limitations of the methodology will be demonstrated in a review of two previous studies investigating the immunogenicity of erythropoietin and timothy grass pollen.


The Journal of Infectious Diseases | 2016

HLA-DRB1 alleles are associated with different magnitudes of dengue Virus–Specific CD4+T-Cell responses

Daniela Weiskopf; Michael A. Angelo; Alba Grifoni; Patrick H. O'Rourke; John Sidney; Sinu Paul; Aruna Dharshan De Silva; E. Phillips; S. Mallal; Sunil Premawansa; Gayani Premawansa; Ananda Wijewickrama; Bjoern Peters; Alessandro Sette

BACKGROUND Each year dengue virus (DENV) infects 400 million human but causes symptomatic disease in only a subset of patients, suggesting that host genetic factors may play a role. HLA molecules that restrict T-cell responses are one of the most polymorphic host factors in humans. METHODS Here we map HLA DRB1-restricted DENV-specific epitopes in individuals previously exposed to DENV, to identify the breadth and specificity of CD4(+) T-cell responses. To investigate whether HLA-specific variations in the magnitude of response might predict associations between dengue outcomes and HLA-DRB1 alleles, we assembled samples from hospitalized patients with known severity of disease. RESULTS The capsid protein followed by nonstructural protein 3 (NS3), NS2A, and NS5 were the most targeted proteins. We further noticed a wide variation in magnitude of T-cell responses as a function of the restricting DRB1 allele and found several HLA alleles that showed trends toward a lower risk of hospitalized disease were associated with a higher magnitude of T-cell responses. CONCLUSIONS Comprehensive identification of unique CD4(+) T-cell epitopes across the 4 DENV serotypes allows the testing of T-cell responses by use of a simple, approachable technique and points to important implications for vaccine design.

Collaboration


Dive into the Sinu Paul's collaboration.

Top Co-Authors

Avatar

Alessandro Sette

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Bjoern Peters

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

John Sidney

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Cecilia S. Lindestam Arlehamn

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Daniela Weiskopf

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Véronique Schulten

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Carla Oseroff

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason Greenbaum

La Jolla Institute for Allergy and Immunology

View shared research outputs
Researchain Logo
Decentralizing Knowledge