Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cedric Duval is active.

Publication


Featured researches published by Cedric Duval.


Cancer Research | 2005

Insulin-Like Growth Factor Binding Protein-5 Is a Target of Matrix Metalloproteinase-7: Implications for Epithelial-Mesenchymal Signaling

Elaine Hemers; Cedric Duval; Catherine McCaig; Mark Handley; Graham J. Dockray; Andrea Varro

Matrix metalloproteinase-7 (MMP-7) is localized to epithelial cells and is up-regulated in many cancers and in inflammation. We now report that MMP-7 targets a key mesenchymal cell type, the myofibroblast. Recombinant MMP-7 stimulated the proliferation and migration of human colonic myofibroblasts. These responses were partly attributable to activation of other MMPs, notably MMP-3 and MMP-8, and to stimulation of the mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Using a proteomic approach, we identified insulin-like growth factor binding protein-5 (IGFBP-5) as a previously unsuspected target of MMP-7 produced by colonic myofibroblasts. We present evidence that the MMP-7 cleavage of IGFBP-5 liberates IGF-II that functions as an autocrine myofibroblast growth factor. Thus, MMP-7 may act as a signal from epithelial cells for local recruitment of myofibroblasts and stimulation of their proliferation. Similar effects of MMP-7 produced in epithelial tumors might account for the expansion of stroma through activation of myofibroblasts.


Journal of Thrombosis and Haemostasis | 2014

The effect of blood coagulation factor XIII on fibrin clot structure and fibrinolysis

Emma Hethershaw; A. L. Cilia La Corte; Cedric Duval; M. Ali; Peter J. Grant; Robert A. S. Ariëns; Helen Philippou

Factor XIII is a 320 kDa tetramer, comprising two enzymatic A‐subunits and two carrier B‐subunits (FXIII A2B2). Activated FXIII (FXIIIa) catalyses the formation of ε‐(γ‐glutamyl)lysyl covalent bonds between γ‐γ, γ‐α and α‐α chains of adjacent fibrin molecules and also cross‐links the major plasmin inhibitor, α2‐antiplasmin, to fibrin.


Blood | 2015

Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin α-chain crosslinking.

James R. Byrnes; Cedric Duval; Yiming Wang; Caroline E. Hansen; Byungwook Ahn; Micah J. Mooberry; Martha A. Clark; Jill M. Johnsen; Susan T. Lord; Wilbur A. Lam; Joost C. M. Meijers; Heyu Ni; Robert A. S. Ariëns; Alisa S. Wolberg

Factor XIII(a) [FXIII(a)] stabilizes clots and increases resistance to fibrinolysis and mechanical disruption. FXIIIa also mediates red blood cell (RBC) retention in contracting clots and determines venous thrombus size, suggesting FXIII(a) is a potential target for reducing thrombosis. However, the mechanism by which FXIIIa retains RBCs in clots is unknown. We determined the effect of FXIII(a) on human and murine clot weight and composition. Real-time microscopy revealed extensive RBC loss from clots formed in the absence of FXIIIa activity, and RBCs exhibited transient deformation as they exited the clots. Fibrin band-shift assays and flow cytometry did not reveal crosslinking of fibrin or FXIIIa substrates to RBCs, suggesting FXIIIa does not crosslink RBCs directly to the clot. RBCs were retained in clots from mice deficient in α2-antiplasmin, thrombin-activatable fibrinolysis inhibitor, or fibronectin, indicating RBC retention does not depend on these FXIIIa substrates. RBC retention in clots was positively correlated with fibrin network density; however, FXIIIa inhibition reduced RBC retention at all network densities. FXIIIa inhibition reduced RBC retention in clots formed with fibrinogen that lacks γ-chain crosslinking sites, but not in clots that lack α-chain crosslinking sites. Moreover, FXIIIa inhibitor concentrations that primarily block α-, but not γ-, chain crosslinking decreased RBC retention in clots. These data indicate FXIIIa-dependent retention of RBCs in clots is mediated by fibrin α-chain crosslinking. These findings expose a newly recognized, essential role for fibrin crosslinking during whole blood clot formation and consolidation and establish FXIIIa activity as a key determinant of thrombus composition and size.


Thrombosis and Haemostasis | 2014

Roles of fibrin α- and γ-chain specific cross-linking by FXIIIa in fibrin structure and function

Cedric Duval; Peter Allan; Simon D. Connell; Victoria Ridger; Helen Philippou; Robert A. S. Ariëns

Factor XIII is responsible for the cross-linking of fibrin γ-chains in the early stages of clot formation, whilst α-chain cross-linking occurs at a slower rate. Although γ- and α-chain cross-linking was previously shown to contribute to clot stiffness, the role of cross-linking of both chains in determining clot structure is currently unknown. Therefore, the aim of this study was to determine the role of individual α- and γ-chain cross-linking during clot formation, and its effects on clot structure. We made use of a recombinant fibrinogen (γQ398N/Q399N/K406R), which does not allow for γ-chain cross-linking. In the absence of cross-linking, intact D-D interface was shown to play a potential role in fibre appearance time, clot stiffness and elasticity. Cross-linking of the fibrin α-chain played a role in the thickening of the fibrin fibres over time, and decreased lysis rate in the absence of α2-antiplasmin. We also showed that α-chain cross-linking played a role in the timing of fibre appearance, straightening fibres, increasing clot stiffness and reducing clot deformation. Cross-linking of the γ-chain played a role in fibrin fibre appearance time and fibre density. Our results show that α- and γ-chain cross-linking play independent and specific roles in fibrin clot formation and structure.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2011

Gastrin stimulates expression of plasminogen activator inhibitor-1 in gastric epithelial cells

Kristin G. Norsett; Islay Steele; Cedric Duval; Stephen J. Sammut; Senthil V. Murugesan; Susan Kenny; Lucille Rainbow; Rod Dimaline; Graham J. Dockray; D M Pritchard; Andrea Varro

Plasminogen activator inhibitor (PAI)-1 is associated with cancer progression, fibrosis and thrombosis. It is expressed in the stomach but the mechanisms controlling its expression there, and its biological role, are uncertain. We sought to define the role of gastrin in regulating PAI-1 expression and to determine the relevance for gastrin-stimulated cell migration and invasion. In gastric biopsies from subjects with elevated plasma gastrin, the abundances of PAI-1, urokinase plasminogen activator (uPA), and uPA receptor (uPAR) mRNAs measured by quantitative PCR were increased compared with subjects with plasma concentrations in the reference range. In patients with hypergastrinemia due to autoimmune chronic atrophic gastritis, there was increased abundance of PAI-1, uPA, and uPAR mRNAs that was reduced by octreotide or antrectomy. Immunohistochemistry revealed localization of PAI-1 to parietal cells and enterochromaffin-like cells in micronodular neuroendocrine tumors in hypergastrinemic subjects. Transcriptional mechanisms were studied by using a PAI-1-luciferase promoter-reporter construct transfected into AGS-G(R) cells. There was time- and concentration-dependent increase of PAI-1-luciferase expression in response to gastrin that was reversed by inhibitors of the PKC and MAPK pathways. In Boyden chamber assays, recombinant PAI-1 inhibited gastrin-stimulated AGS-G(R) cell migration and invasion, and small interfering RNA treatment increased responses to gastrin. We conclude that elevated plasma gastrin concentrations are associated with increased expression of gastric PAI-1, which may act to restrain gastrin-stimulated cell migration and invasion.


Carcinogenesis | 2012

Release of TGFβig-h3 by gastric myofibroblasts slows tumor growth and is decreased with cancer progression

Chris Holmberg; Michael Quante; Islay Steele; Jothi Dinesh Kumar; Silviya Balabanova; Cedric Duval; Mátyás Czepán; Zoltán Rakonczay; László Tiszlavicz; István Németh; György Lázár; Zsolt Simonka; Rosalind E. Jenkins; Péter Hegyi; Timothy C. Wang; Graham J. Dockray; Andrea Varro

Tumor progression has been linked to changes in the stromal environment. Myofibroblasts are stromal cells that are often increased in tumors but their contribution to cancer progression is not well understood. Here, we show that the secretomes of myofibroblasts derived from gastric cancers [cancer-associated myofibroblasts (CAMs)] differ in a functionally significant manner from those derived from adjacent tissue [adjacent tissue myofibroblasts (ATMs)]. CAMs showed increased rates of migration and proliferation compared with ATMs or normal tissue myofibroblasts (NTMs). Moreover, conditioned medium (CM) from CAMs significantly stimulated migration, invasion and proliferation of gastric cancer cells compared with CM from ATMs or NTMs. Proteomic analysis of myofibroblast secretomes revealed decreased abundance of the extracellular matrix (ECM) adaptor protein like transforming growth factor-β-induced gene-h3 (TGFβig-h3) in CAMs, which was correlated with lymph node involvement and shorter survival. TGFβig-h3 inhibited IGF-II-stimulated migration and proliferation of both cancer cells and myofibroblasts, and suppressed IGF-II activation of p42/44 MAPkinase; TGFβig-h3 knockdown increased IGF-II- and CM-stimulated migration. Furthermore, administration of TGFβig-h3 inhibited myofibroblast-stimulated growth of gastric cancer xenografts. We conclude that stromal cells exert inhibitory as well as stimulatory effects on tumor cells; TGFβig-h3 is a stromal inhibitory factor that is decreased with progression of gastric cancers.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Increased expression of the urokinase plasminogen activator system by Helicobacter pylori in gastric epithelial cells

Susan Kenny; Cedric Duval; Stephen J. Sammut; Islay Steele; D. Mark Pritchard; John Atherton; Richard H. Argent; Rod Dimaline; Graham J. Dockray; Andrea Varro

The gastric pathogen Helicobacter pylori (H. pylori) is linked to peptic ulcer and gastric cancer, but the relevant pathophysiological mechanisms are unclear. We now report that H. pylori stimulates the expression of plasminogen activator inhibitor (PAI)-1, urokinase plasminogen activator (uPA), and its receptor (uPAR) in gastric epithelial cells and the consequences for epithelial cell proliferation. Real-time PCR of biopsies from gastric corpus, but not antrum, showed significantly increased PAI-1, uPA, and uPAR in H. pylori-positive patients. Transfection of primary human gastric epithelial cells with uPA, PAI-1, or uPAR promoters in luciferase reporter constructs revealed expression of all three in H+/K+ATPase- and vesicular monoamine transporter 2-expressing cells; uPA was also expressed in pepsinogen- and uPAR-containing trefoil peptide-1-expressing cells. In each case expression was increased in response to H. pylori and for uPA, but not PAI-1 or uPAR, required the virulence factor CagE. H. pylori also stimulated soluble and cell surface-bound uPA activity, and both were further increased by PAI-1 knockdown, consistent with PAI-1 inhibition of endogenous uPA. H. pylori stimulated epithelial cell proliferation, which was inhibited by uPA immunoneutralization and uPAR knockdown; exogenous uPA also stimulated proliferation that was further increased after PAI-1 knockdown. The proliferative effects of uPA were inhibited by immunoneutralization of the EGF receptor and of heparin-binding EGF (HB-EGF) by the mutant diphtheria toxin CRM197 and an EGF receptor tyrosine kinase inhibitor. H. pylori induction of uPA therefore leads to epithelial proliferation through activation of HB-EGF and is normally inhibited by concomitant induction of PAI-1; treatments directed at inhibition of uPA may slow the progression to gastric cancer.


Thrombosis Research | 2016

Fibrin clot structure in patients with congenital dysfibrinogenaemia

Alessandro Casini; Cedric Duval; Xiaoxi Pan; Véronique Tintillier; C. Biron-Andreani; Robert A. S. Ariëns

The clinical phenotype of patients with congenital dysfibrinogenaemia is highly heterogeneous, from absence of symptoms to mild bleeding, or thrombosis. A few mutations are associated with a specific phenotype, but generally the clinical course is not predictable. We investigated whether fibrin clot properties are correlated with the patients phenotype and/or genotype. Ex vivo plasma fibrin clot characteristics, including turbidity, fibrinolysis, clot permeability and fibrin fibre density assessed by laser scanner confocal microscopy were investigated in 24 genotyped patients with congenital dysfibrinogenaemia compared to normal pool plasma. Compared to normal pool plasma, the patients were characterised by slower fibrin polymerisation (lag time, 345.10 ± 22.98 vs. 166.00s), thinner fibrin fibres (maximum absorbance, 0.15 ± 0.01 vs. 0.31), prolonged clot lysis time (23.72 ± 0.97 vs. 20.32 min) and larger clot pore size (21.5×10(-9) ± 4.48×10(-9) vs. 7.96×10(-9)cm(2)). Laser scanning confocal microscopy images confirmed disorganised fibrin networks in all patients. Patients with tendency to bleed showed an increased permeability compared to asymptomatic patients (p=0.01) and to patients with a thrombotic history (p=0.02) while patients with thrombotic history had a tendency to have a prolonged clot lysis time. Fibrin clot properties were similar among hotspot mutations. Further studies including a larger number of patients are needed to evaluate whether analysis of permeability and clot lysis time may help to distinguish the clinical phenotype in these patients and to assess differences according to the genotype.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2016

Factor XIII A-Subunit V34L Variant Affects Thrombus Cross-Linking in a Murine Model of Thrombosis

Cedric Duval; Majid Ali; Waleed W. Chaudhry; Victoria Ridger; Robert A. S. Ariëns; Helen Philippou

Objective— Factor XIII (FXIII) cross-links fibrin upon activation by thrombin. Activation involves cleavage at residue 37 by thrombin, releasing an activation peptide. A common polymorphism (valine to leucine variant at residue 34, V34L), located in the activation peptide, has been associated with increased activation rates and paradoxically a protective effect in cardiovascular disease. There is, currently, no data available on the effects of V34L from in vivo models of thrombosis. We examined the effect of FXIII V34L on clot formation and cross-linking in vivo. Approach and Results— We generated a panel of full-length recombinant human FXIII-A2 variants with amino acid substitutions in the activation peptide to investigate the effect of these variants on activation rate, and we used wild-type, V34L, and alanine to glycine variant at residue 33 variants to study the effects of varying FXIII activation rate on thrombus formation in a murine model of FeCl3 injury. FXIII activation assay showed that residues 29, 30, 33, and 34 play a critical role in thrombin interaction. Full-length recombinant human FXIII-A2 V34L has significant effects on clot formation, structure, and lysis in vitro, using turbidity assay. This variant influenced fibrin cross-linking but not size of the thrombus in vivo. Conclusions— Mutations in the activation peptide of full-length recombinant FXIII regulate activation rates by thrombin, and V34L influences in vivo thrombus formation by increased cross-linking of the clot.


Thrombosis and Haemostasis | 2013

Partial deletion of the αC-domain in the Fibrinogen Perth variant is associated with thrombosis, increased clot strength and delayed fibrinolysis

Sarah K. Westbury; Cedric Duval; Helen Philippou; Rebecca Brown; Kurtis Lee; Sherina L. Murden; Emma Phillips; Christopher Reilly-Stitt; Daniel Whalley; Robert A. S. Ariëns; Andrew D Mumford

Genetic fibrinogen (FGN) variants that are associated with bleeding or thrombosis may be informative about fibrin polymerisation, structure and fibrinolysis. We report a four generation family with thrombosis and heritable dysfibrinogenaemia segregating with a c.[1541delC];[=] variation in FGA (FGN-Perth). This deletion predicts a truncated FGN αC-domain with an unpaired terminal Cys at residue 517 of FGN-Aα. In keeping with this, SDS-PAGE of purified FGN-Perth identified a truncated FGN-Aα chain with increased co-purification of albumin, consistent with disulphide bonding to the terminal Cys of the variant FGN-Aα. Clot visco-elastic strength in whole blood containing FGN-Perth was greater than controls and tPA-mediated fibrinolysis was delayed. In FGN-Perth plasma and in purified FGN-Perth, there was markedly reduced final turbidity after thrombin-mediated clot generation. Consistent with this, FGN-Perth formed tighter, thinner fibrin fibres than controls indicating defective lateral aggregation of protofibrils. Clots generated with thrombin in FGN-Perth plasma were resistant to tPA-mediated fibrinolysis. FGN-Perth clot also displayed impaired tPA-mediated plasmin generation but incorporated α2-antiplasmin at a similar rate to control. Impaired fibrinolysis because of defective plasmin generation potentially explains the FGN-Perth clinical phenotype. These findings highlight the importance of the FGN αC-domain in the regulation of clot formation and fibrinolysis.

Collaboration


Dive into the Cedric Duval's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Varro

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Islay Steele

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean E. Crabtree

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge