Fraser L. Macrae
University of Leeds
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fraser L. Macrae.
Journal of Thrombosis and Haemostasis | 2016
Greg C.G. Hugenholtz; Fraser L. Macrae; Jelle Adelmeijer; Sebastiaan Dulfer; Robert J. Porte; Ton Lisman; Robert A. S. Ariëns
Essentials Patients with cirrhosis have hemostatic changes, which may contribute to a risk of thrombosis. This in vitro study compares clot formation and structure between patients and healthy subjects. Clot formation is delayed in patients; ultimately, however, clot permeability is decreased. The thrombogenic structure of fibrin clots may contribute to the thrombotic risk in cirrhosis.
Thrombosis Research | 2014
Katherine I. Bridge; Fraser L. Macrae; Marc A. Bailey; Anne Johnson; Helen Philippou; D. Julian A. Scott; Robert A.S. Ariёns
INTRODUCTION Abdominal Aortic Aneurysm (AAA) involves dilatation of the abdominal aorta, with a natural history of expansion and eventual rupture. We have previously shown that AAA patients form denser clots with smaller pores, which are more resistant to fibrinolysis. The aim of this study was to use functional polymorphisms of the fibrinolytic system to identify how changes to proteins involved in fibrinolysis may play a role in the development of AAA. METHODS Caucasian subjects ≥ 55 years (602 AAA patients and 490 matched controls) were genotyped for four polymorphisms (α-2-antiplasmin α2AP Arg6Trp and Arg407Lys, Thrombin-activatable fibrinolysis inhibitor TAFI Thr325Ile and tissue plasminogen activator tPA 7351C→T). DNA was extracted from blood, and genotype identified using real time PCR. Fibrin clot structure was analysed by permeation and turbidity in a subset of patients and controls. RESULTS Genotypes across the study population were in Hardy-Weinberg Equilibrium. The two α2AP polymorphisms, Arg6Trp and Arg407Lys were in linkage disequilibrium (P<0.0001), and possession of a 407Lys allele negatively associated with AAA (odds ratio 0.833, CI95 0.7-0.991, P=0.040). The TAFI Thr325Ile and the tPA 7351C→T polymorphisms were not associated with AAA. The α2AP 407Lys allele was not associated with in-vitro fibrinolysis times in plasma from patients with AAA. CONCLUSION Possession of the α2AP 407Lys allele was negatively associated with AAA, and thus changes in α2AP may affect aneurysm growth and development. These data indicate that the regulation of plasmin activity (through binding to α2AP), rather than plasmin generation (TAFI, tPA), may play a role in AAA.
Journal of Clinical Investigation | 2018
Fraser L. Macrae; Cedric Duval; Praveen Papareddy; Stephen R. Baker; Nadira Yuldasheva; Katherine J. Kearney; Helen R. McPherson; Nathan Asquith; Joke Konings; Alessandro Casini; Jay L. Degen; Simon D. Connell; Helen Philippou; Alisa S. Wolberg; Heiko Herwald; Robert A. S. Ariëns
Hemostasis requires conversion of fibrinogen to fibrin fibers that generate a characteristic network, interact with blood cells, and initiate tissue repair. The fibrin network is porous and highly permeable, but the spatial arrangement of the external clot face is unknown. Here we show that fibrin transitioned to the blood-air interface through Langmuir film formation, producing a protective film confining clots in human and mouse models. We demonstrated that only fibrin is required for formation of the film, and that it occurred in vitro and in vivo. The fibrin film connected to the underlying clot network through tethering fibers. It was digested by plasmin, and formation of the film was prevented with surfactants. Functionally, the film retained blood cells and protected against penetration by bacterial pathogens in a murine model of dermal infection. Our data show a remarkable aspect of blood clotting in which fibrin forms a protective film covering the external surface of the clot, defending the organism against microbial invasion.
Journal of Thrombosis and Haemostasis | 2017
Corey A. Scipione; Jackson T. McAiney; Daniel J. Simard; Zainab A. Bazzi; Matthew Gemin; Rocco Romagnuolo; Fraser L. Macrae; Robert A. S. Ariëns; Robert A. Hegele; Janeen Auld; James W. Gauld; Michael B. Boffa; Marlys L. Koschinsky
Essentials Elevated lipoproteinp(a) is an independent and causal risk factor for atherothrombotic diseases. rs3798220 (Ile/Met substitution in apo(a) protease‐like domain) is associated with disease risk. Recombinant I4399M apo(a) altered clot structure to accelerate coagulation/delay fibrinolysis. Evidence was found for increased solvent exposure and oxidation of Met residue.
PLOS ONE | 2014
Fraser L. Macrae; Hannah Lee Evans; Katherine I. Bridge; Anne Johnson; D. Julian A. Scott; Robert A. S. Ariëns
Introduction Abdominal aortic aneurysms (AAA) are characterized by a progressive dilatation of the abdominal aorta, and are associated with a high risk of rupture once the dilatation exceeds 55 mm in diameter. A large proportion of AAA develops an intraluminal thrombus, which contributes to hypoxia, inflammation and tissue degradation. We have previously shown that patients with AAA produce clots with altered structure which is more resistant to fibrinolysis. The aim of this study was to investigate genetic polymorphisms of FXIII and fibrinogen in AAA to identify how changes to these proteins may play a role in the development of AAA. Methods Subjects of Western/European descent, ≥55 years of age (520 AAA patients and 449 controls) were genotyped for five polymorphisms (FXIII-A Val34Leu, FXIII-B His95Arg, FXIII-B Splice Variant (intron K nt29576C-G), Fib-A Thr312Ala and Fib-B Arg448Lys) by RT-PCR. Data were analysed by χ2 test and CubeX. Results The FXIII-B Arg95 allele associated with AAA (Relative risk - 1.240, CI 1.093–1.407, P = 0.006). There was no association between FXIII-A Val34Leu, FXIII-B Splice Variant, Fib-A Thr312Ala or Fib-B Arg448Lys and AAA. FXIII-B His95Arg and FXIII-B Splice variant (intron K nt29576C-G) were in negative linkage disequilibrium (D’ = −0.609, p = 0.011). Discussion The FXIII-B Arg95 variant is associated with an increased risk of AAA. These data suggest a possible role for FXIII in AAA pathogenesis.
Thrombosis and Haemostasis | 2018
Henri M.H. Spronk; T. Padro; Joylene E. Siland; Jürgen H. Prochaska; J. Winters; A.C. van der Wal; Jelle J. Posthuma; Gordon Lowe; E. d'Alessandro; P. Wenzel; D. M. Coenen; P. H. Reitsma; Wolfram Ruf; R. H. van Gorp; Rory R. Koenen; Tanja Vajen; N. A. Alshaikh; Alisa S. Wolberg; Fraser L. Macrae; N. Asquith; Johan W. M. Heemskerk; Alexandra Heinzmann; M. Moorlag; Nigel Mackman; P.E.J. van der Meijden; J. C. M. Meijers; M. Heestermans; Thomas Renné; S. Dólleman; W. Chayouâ
Atherothrombosis is a leading cause of cardiovascular mortality and long-term morbidity. Platelets and coagulation proteases, interacting with circulating cells and in different vascular beds, modify several complex pathologies including atherosclerosis. In the second Maastricht Consensus Conference on Thrombosis, this theme was addressed by diverse scientists from bench to bedside. All presentations were discussed with audience members and the results of these discussions were incorporated in the final document that presents a state-of-the-art reflection of expert opinions and consensus recommendations regarding the following five topics: 1. Risk factors, biomarkers and plaque instability: In atherothrombosis research, more focus on the contribution of specific risk factors like ectopic fat needs to be considered; definitions of atherothrombosis are important distinguishing different phases of disease, including plaque (in)stability; proteomic and metabolomics data are to be added to genetic information. 2. Circulating cells including platelets and atherothrombosis: Mechanisms of leukocyte and macrophage plasticity, migration, and transformation in murine atherosclerosis need to be considered; disease mechanism-based biomarkers need to be identified; experimental systems are needed that incorporate whole-blood flow to understand how red blood cells influence thrombus formation and stability; knowledge on platelet heterogeneity and priming conditions needs to be translated toward the in vivo situation. 3. Coagulation proteases, fibrin(ogen) and thrombus formation: The role of factor (F) XI in thrombosis including the lower margins of this factor related to safe and effective antithrombotic therapy needs to be established; FXI is a key regulator in linking platelets, thrombin generation, and inflammatory mechanisms in a renin-angiotensin dependent manner; however, the impact on thrombin-dependent PAR signaling needs further study; the fundamental mechanisms in FXIII biology and biochemistry and its impact on thrombus biophysical characteristics need to be explored; the interactions of red cells and fibrin formation and its consequences for thrombus formation and lysis need to be addressed. Platelet-fibrin interactions are pivotal determinants of clot formation and stability with potential therapeutic consequences. 4. Preventive and acute treatment of atherothrombosis and arterial embolism; novel ways and tailoring? The role of protease-activated receptor (PAR)-4 vis à vis PAR-1 as target for antithrombotic therapy merits study; ongoing trials on platelet function test-based antiplatelet therapy adjustment support development of practically feasible tests; risk scores for patients with atrial fibrillation need refinement, taking new biomarkers including coagulation into account; risk scores that consider organ system differences in bleeding may have added value; all forms of oral anticoagulant treatment require better organization, including education and emergency access; laboratory testing still needs rapidly available sensitive tests with short turnaround time. 5. Pleiotropy of coagulation proteases, thrombus resolution and ischaemia-reperfusion: Biobanks specifically for thrombus storage and analysis are needed; further studies on novel modified activated protein C-based agents are required including its cytoprotective properties; new avenues for optimizing treatment of patients with ischaemic stroke are needed, also including novel agents that modify fibrinolytic activity (aimed at plasminogen activator inhibitor-1 and thrombin activatable fibrinolysis inhibitor.
International Journal of Nanomedicine | 2018
Filomena A. Carvalho; Ana Filipa Guedes; Cedric Duval; Fraser L. Macrae; Luke Swithenbank; David H. Farrell; Robert A. S. Ariëns; N. C. Santos
Background Erythrocyte aggregation, a cardiovascular risk factor, is increased by high plasma fibrinogen levels. Here, the effect of different fibrinogen mutations on binding to its human erythrocyte receptor was assessed in order to identify the interaction sites. Methods Three fibrinogen variants were tested, specifically mutated in their putative integrin recognition sites on the Aα chain (mutants D97E, D574E and D97E/D574E) and compared with wild-type fibrinogen. Results Atomic force microscopy-based force spectroscopy measurements showed a significant decrease both on the fibrinogen–erythrocyte binding force and on its frequency for fibrinogen with the D97E mutation, indicating that the corresponding arginine–glycine–aspartate sequence (residues 95–97) is involved in this interaction, and supporting that the fibrinogen receptor on erythrocytes has a β3 subunit. Changes in the fibrin clot network structure obtained with the D97E mutant were observed by scanning electron microscopy. Conclusion These findings may lead to innovative perspectives on the development of new therapeutic approaches to overcome the risks of fibrinogen-driven erythrocyte hyperaggregation.
Haematologica | 2018
Barnaby Peacock-Young; Fraser L. Macrae; Darren J. Newton; Anita Hill; Robert A. S. Ariëns
Paroxysmal nocturnal hemoglobinuria is a rare acquired hematologic disorder, the most serious complication of which is thrombosis. The increased incidence of thrombosis in paroxysmal nocturnal hemoglobinuria is still poorly understood, but unlike many other thrombotic disorders, predominantly involves complement-mediated mechanisms. This review article discusses the different factors that contribute to the increased risk of thrombosis in paroxysmal nocturnal hemoglobinuria. Paroxysmal nocturnal hemoglobinuria leads to a complex and multifaceted prothrombotic state due to the pathological effects of platelet activation, intravascular hemolysis and neutrophil/monocyte activation. Platelet and endothelial microparticles as well as oxidative stress may play a role. Impaired fibrinolysis has also been observed and may be caused by several mechanisms involving interactions between complement activation, coagulation and fibrinolysis. While many factors may affect thrombosis in paroxysmal nocturnal hemoglobinuria, the relative contribution of each mechanism that has been implicated is difficult to quantify. Further studies, including novel in vivo and in vitro thrombosis models, are required in order to define the role of the individual mechanisms contributing to thrombosis, impaired fibrinolysis and clarify other complement-driven prothrombotic mechanisms in paroxysmal nocturnal hemoglobinuria.
PLOS ONE | 2017
Katherine I. Bridge; Charlotte Revill; Fraser L. Macrae; Marc A. Bailey; Nadira Yuldasheva; Stephen B. Wheatcroft; Roger K. Butlin; Richard Foster; D. Julian A. Scott; Ann Gils; Robert A.S. Ariёns; Christoph E. Hagemeyer
Objective Thrombin-activatable fibrinolysis inhibitor (TAFI) reduces the breakdown of fibrin clots through its action as an indirect inhibitor of plasmin. Studies in TAFI-deficient mice have implicated a potential role for TAFI in Abdominal Aortic Aneurysm (AAA) disease. The role of TAFI inhibition on AAA formation in adult ApoE-/- mice is unknown. The aim of this paper was to investigate the effects of TAFI inhibition on AAA development and progression. Methods Using the Angiotensin II model of AAA, male ApoE-/- mice were infused with Angiotensin II 750ng/kg/min with or without a monoclonal antibody inhibitor of plasmin-mediated activation of TAFI, MA-TCK26D6, or a competitive small molecule inhibitor of TAFI, UK-396082. Results Inhibition of TAFI in the Angiotensin II model resulted in a decrease in the mortality associated with AAA rupture (from 40.0% to 16.6% with MA-TCK26D6 (log-rank Mantel Cox test p = 0.16), and 8.3% with UK-396082 (log-rank Mantel Cox test p = 0.05)). Inhibition of plasmin-mediated TAFI activation reduced the incidence of AAA from 52.4% to 30.0%. However, late treatment with MA-TCK26D6 once AAA were already established had no effect on the progression of AAA in this model. Conclusions The formation of intra-mural thrombus is responsible for the dissection and early rupture in the angiotensin II model of AAA, and this process can be prevented through inhibition of TAFI. Late treatment with a TAFI inhibitor does not prevent AAA progression. These data may indicate a role for inhibition of plasmin-mediated TAFI activation in the early stages of AAA development, but not in its progression.
Journal of Thrombosis and Haemostasis | 2017
Katherine I. Bridge; L. Bollen; J. Zhong; M. Hesketh; Fraser L. Macrae; Anne Johnson; Helen Philippou; D. J. A. Scott; Ann Gils; Robert A.S. Ariёns
Essentials Patients with abdominal aortic aneurysms (AAA) develop dense clots that are resistant to lysis. This study explores the role of thrombin‐activatable fibrinolysis inhibitor (TAFI) in human AAA. There is evidence of chronically increased TAFI activation in patients with AAA. TAFI may represent a pharmacological target for cardiovascular risk reduction in AAA.