Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cedric Hurth is active.

Publication


Featured researches published by Cedric Hurth.


Analytical Chemistry | 2010

Integrated Microfluidic System for Rapid Forensic DNA Analysis: Sample Collection to DNA Profile

Andrew Hopwood; Cedric Hurth; Jianing Yang; Zhi Cai; Nina Moran; John Lee-Edghill; Alan Nordquist; Ralf Lenigk; Matthew Estes; John P. Haley; Colin McAlister; Xiaojia Chen; Carla Brooks; Stan Smith; Keith Elliott; Pieris Koumi; Frederic Zenhausern; Gillian Tully

We demonstrate a conduit for the delivery of a step change in the DNA analysis process: A fully integrated instrument for the analysis of multiplex short tandem repeat DNA profiles from reference buccal samples is described and is suitable for the processing of such samples within a forensic environment such as a police custody suite or booking office. The instrument is loaded with a DNA processing cartridge which incorporates on-board pumps and valves which direct the delivery of sample and reagents to the various reaction chambers to allow DNA purification, amplification of the DNA by PCR, and collection of the amplified product for delivery to an integral CE chip. The fluorescently labeled product is separated using micro capillary electrophoresis with a resolution of 1.2 base pairs (bp) allowing laser induced fluorescence-based detection of the amplified short tandem repeat fragments and subsequent analysis of data to produce a DNA profile which is compatible with the data format of the UK DNA database. The entire process from taking the sample from a suspect, to database compatible DNA profile production can currently be achieved in less than 4 h. By integrating such an instrument and microfluidic cartridge with the forensic process, we believe it will be possible in the near future to process a DNA sample taken from an individual in police custody and compare the profile with the DNA profiles held on a DNA Database in as little as 3 h.


Electrophoresis | 2010

An automated instrument for human STR identification: Design, characterization, and experimental validation

Cedric Hurth; Stanley D. Smith; Alan Nordquist; Ralf Lenigk; Brett Duane; David Nguyen; Amol Surve; Andrew Hopwood; Matthew Estes; Jianing Yang; Zhi Cai; Xiaojia Chen; John Lee-Edghill; Nina Moran; Keith Elliott; Gillian Tully; Frederic Zenhausern

The microfluidic integration of an entire DNA analysis workflow on a fully integrated miniaturized instrument is reported using lab‐on‐a‐chip automation to perform DNA fingerprinting compatible with CODIS standard relevant to the forensic community. The instrument aims to improve the cost, duration, and ease of use to perform a “sample‐to‐profile” analysis with no need for human intervention. The present publication describes the operation of the three major components of the system: the electronic control components, the microfluidic cartridge and CE microchip, and the optical excitation/detection module. Experimental details are given to characterize the level of performance, stability, reliability, accuracy, and sensitivity of the prototype system. A typical temperature profile from a PCR amplification process and an electropherogram of a commercial size standard (GeneScan 500™, Applied Biosystems) separation are shown to assess the relevance of the instrument to forensic applications. Finally, we present a profile from an automated integrated run where lysed cells from a buccal swab were introduced in the system and no further human intervention was required to complete the analysis.


Analytical Methods | 2012

Identification of fluid and substrate chemistry based on automatic pattern recognition of stains

Namwon Kim; Zhenguo Li; Cedric Hurth; Frederic Zenhausern; Shih-Fu Chang; Daniel Attinger

This study proposes that images of stains from 100-nanolitre drops can be automatically identified as signatures of fluid composition and substrate chemistry, for e.g. rapid biological testing. Two datasets of stain images are produced and made available online, one with consumable fluids, and the other with biological fluids. Classification algorithms are used to identify an unknown stain by measuring its similarity to representative examples of predefined categories. The accuracy ranges from 80 to 94%, compared to an accuracy by random assignment of 3 to 4%. Clustering algorithms are also applied to group unknown stain images into a number of clusters each likely to correspond to similar combinations of fluids and substrates. The clustering accuracy ranges from 62 to 80%, compared to an accuracy by random assignment of 3 or 4%. The algorithms were also remarkably accurate at determining the presence or absence of biotin and streptavidin respectively in the liquid and on the glass, the salt composition, or the pH of the solution.


Forensic Science International-genetics | 2014

An integratable microfluidic cartridge for forensic swab samples lysis

Jianing Yang; Carla Brooks; Matthew Estes; Cedric Hurth; Frederic Zenhausern

Fully automated rapid forensic DNA analysis requires integrating several multistep processes onto a single microfluidic platform, including substrate lysis, extraction of DNA from the released lysate solution, multiplexed PCR amplification of STR loci, separation of PCR products by capillary electrophoresis, and analysis for allelic peak calling. Over the past several years, most of the rapid DNA analysis systems developed started with the reference swab sample lysate and involved an off-chip lysis of collected substrates. As a result of advancement in technology and chemistry, addition of a microfluidic module for swab sample lysis has been achieved in a few of the rapid DNA analysis systems. However, recent reports on integrated rapid DNA analysis systems with swab-in and answer-out capability lack any quantitative and qualitative characterization of the swab-in sample lysis module, which is important for downstream forensic sample processing. Maximal collection and subsequent recovery of the biological material from the crime scene is one of the first and critical steps in forensic DNA technology. Herein we present the design, fabrication and characterization of an integratable swab lysis cartridge module and the test results obtained from different types of commonly used forensic swab samples, including buccal, saliva, and blood swab samples, demonstrating the compatibility with different downstream DNA extraction chemistries. This swab lysis cartridge module is easy to operate, compatible with both forensic and microfluidic requirements, and ready to be integrated with our existing automated rapid forensic DNA analysis system. Following the characterization of the swab lysis module, an integrated run from buccal swab sample-in to the microchip CE electropherogram-out was demonstrated on the integrated prototype instrument. Therefore, in this study, we demonstrate that this swab lysis cartridge module is: (1) functionally, comparable with routine benchtop lysis, (2) compatible with various types of swab samples and chemistries, and (3) integratable to achieve a micro total analysis system (μTAS) for rapid DNA analysis.


Electrophoresis | 2012

Direct loading of polymer matrices in plastic microchips for rapid DNA analysis: A comparative study

Cedric Hurth; Jian Gu; Maurice J. Aboud; Matthew Estes; Alan Nordquist; Bruce R. McCord; Frederic Zenhausern

We report the design and performance validation of microfluidic separation technologies for human identification using a disposable plastic device suitable for integration into an automated rapid DNA analysis system. A fabrication process for a 15‐cm long hot‐embossed plastic microfluidic devices with a smooth semielliptical cross section out of cyclic olefin copolymer is presented. We propose a mixed polymer solution of 95% w/v hydroxyethylcellulose and 5% w/v polyvinylpyrrolidone for a final polymer concentration of 2.5 or 3.0% to be used as coating and sieving matrix for DNA separation. This formulation allows preparing the microchip without pretreatment in a single‐loading step and provides high‐resolution separation (≈1.2 bp for fragments <200 bp), which is superior to existing commercial matrices under the same conditions. The hot‐embossed device performance is characterized and compared to injection‐molded devices made out of cyclic olefin copolymer based on their respective injector geometry, channel shape, and surface charges. Each device design is assessed by fluorescence videomicroscopy to evaluate the formation of injection plugs, then by comparing electropherograms for the separation of a DNA size standard relevant to human identification.


Journal of Applied Physics | 2011

Clinical diagnostic of pleural effusions using a high-speed viscosity measurement method

Cedric Hurth; Katherine Klein; Lena van Nimwegen; Ronald Korn; Krishnaswami Vijayaraghavan; Frederic Zenhausern

We present a novel bio-analytical method to discriminate between transudative and exudative pleural effusions based on a high-speed video analysis of a solid glass sphere impacting a liquid. Since the result depends on the solution viscosity, it can ultimately replace the battery of biochemical assays currently used. We present results obtained on a series of 7 pleural effusions obtained from consenting patients by analyzing both the splash observed after the glass impactor hits the liquid surface, and in a configuration reminiscent of the drop ball viscometer with added sensitivity and throughput provided by the high-speed camera. The results demonstrate distinction between the pleural effusions and good correlation with the fluid chemistry analysis to accurately differentiate exudates and transudates for clinical purpose. The exudative effusions display a viscosity around 1.39 ± 0.08 cP whereas the transudative effusion was measured at 0.89 ± 0.09 cP, in good agreement with previous reports.


Physical Chemistry Chemical Physics | 2013

A tuneable array of unique steady-state microfluidic gradients

Matthew Estes; Cedric Hurth; Matthew Barrett; Frederic Zenhausern

We report an on-chip gradient generator that has been designed, modelled, fabricated, and characterized to facilitate temporal tuning of several unique gradients in parallel for multiple applications. This design allows for steady state programming of the intensities across multiple orders of magnitude while producing exponential, linear, and logarithmic gradient profiles. The magnitude of the gradients is controlled through regulating the ratio of the two on-chip flow inlets without the need for valves or other active mixers. On-chip binding of biotin by a fluorescent streptavidin complex creates a diffusive barrier that regulates access to the gradient inlets, providing a second orthogonal mechanism for regulating the microgradient intensities. The device is also characterized using an on-chip enzymatic reaction to produce an array of tuneable product concentrations within the various microchannels.


Journal of Applied Physics | 2013

Automation of a high-speed imaging setup for differential viscosity measurements

Cedric Hurth; Brett Duane; D. Whitfield; Stan Smith; Alan Nordquist; Frederic Zenhausern

We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have been reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an “unknown” solution of hydroxyethyl cellulose.


Archive | 2008

SENSING AND IDENTIFYING BIOLOGICAL SAMPLES ON MICROFLUIDIC DEVICES

Frederic Zenhausern; Ralf Lenigk; Jianing Yang; Zhi Cai; Alan Nordquist; Stanley D. Smith; David Maggiano; Mrinalini Prasad; Karem Linan; Edward Olaya; Baiju Thomas; Cedric Hurth; Darryl Cox; Mark Richard; Glen Mccarty


Archive | 2010

Relating to devices

Frederic Zenhausern; Alan Nordquist; Ralf Lenigk; Cedric Hurth; Jianing Yang; Xiaojia Chen; Matthew Estes; John Lee-Edghill; Nina Moran; Andrew Hopwood; Pieris Koumi

Collaboration


Dive into the Cedric Hurth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Hopwood

Forensic Science Service

View shared research outputs
Top Co-Authors

Avatar

Ralf Lenigk

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Nina Moran

Forensic Science Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pieris Koumi

Forensic Science Service

View shared research outputs
Top Co-Authors

Avatar

Zhi Cai

University of Arizona

View shared research outputs
Researchain Logo
Decentralizing Knowledge