Matthew Estes
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew Estes.
Analytical Chemistry | 2010
Andrew Hopwood; Cedric Hurth; Jianing Yang; Zhi Cai; Nina Moran; John Lee-Edghill; Alan Nordquist; Ralf Lenigk; Matthew Estes; John P. Haley; Colin McAlister; Xiaojia Chen; Carla Brooks; Stan Smith; Keith Elliott; Pieris Koumi; Frederic Zenhausern; Gillian Tully
We demonstrate a conduit for the delivery of a step change in the DNA analysis process: A fully integrated instrument for the analysis of multiplex short tandem repeat DNA profiles from reference buccal samples is described and is suitable for the processing of such samples within a forensic environment such as a police custody suite or booking office. The instrument is loaded with a DNA processing cartridge which incorporates on-board pumps and valves which direct the delivery of sample and reagents to the various reaction chambers to allow DNA purification, amplification of the DNA by PCR, and collection of the amplified product for delivery to an integral CE chip. The fluorescently labeled product is separated using micro capillary electrophoresis with a resolution of 1.2 base pairs (bp) allowing laser induced fluorescence-based detection of the amplified short tandem repeat fragments and subsequent analysis of data to produce a DNA profile which is compatible with the data format of the UK DNA database. The entire process from taking the sample from a suspect, to database compatible DNA profile production can currently be achieved in less than 4 h. By integrating such an instrument and microfluidic cartridge with the forensic process, we believe it will be possible in the near future to process a DNA sample taken from an individual in police custody and compare the profile with the DNA profiles held on a DNA Database in as little as 3 h.
Nature Communications | 2016
Pranjul Shah; Joëlle V. Fritz; Enrico Glaab; Mahesh S. Desai; Kacy Greenhalgh; Audrey Frachet; Magdalena Niegowska; Matthew Estes; Christian Jäger; Carole Seguin-Devaux; Frederic Zenhausern; Paul Wilmes
Changes in the human gastrointestinal microbiome are associated with several diseases. To infer causality, experiments in representative models are essential, but widely used animal models exhibit limitations. Here we present a modular, microfluidics-based model (HuMiX, human–microbial crosstalk), which allows co-culture of human and microbial cells under conditions representative of the gastrointestinal human–microbe interface. We demonstrate the ability of HuMiX to recapitulate in vivo transcriptional, metabolic and immunological responses in human intestinal epithelial cells following their co-culture with the commensal Lactobacillus rhamnosus GG (LGG) grown under anaerobic conditions. In addition, we show that the co-culture of human epithelial cells with the obligate anaerobe Bacteroides caccae and LGG results in a transcriptional response, which is distinct from that of a co-culture solely comprising LGG. HuMiX facilitates investigations of host–microbe molecular interactions and provides insights into a range of fundamental research questions linking the gastrointestinal microbiome to human health and disease.
Electrophoresis | 2010
Cedric Hurth; Stanley D. Smith; Alan Nordquist; Ralf Lenigk; Brett Duane; David Nguyen; Amol Surve; Andrew Hopwood; Matthew Estes; Jianing Yang; Zhi Cai; Xiaojia Chen; John Lee-Edghill; Nina Moran; Keith Elliott; Gillian Tully; Frederic Zenhausern
The microfluidic integration of an entire DNA analysis workflow on a fully integrated miniaturized instrument is reported using lab‐on‐a‐chip automation to perform DNA fingerprinting compatible with CODIS standard relevant to the forensic community. The instrument aims to improve the cost, duration, and ease of use to perform a “sample‐to‐profile” analysis with no need for human intervention. The present publication describes the operation of the three major components of the system: the electronic control components, the microfluidic cartridge and CE microchip, and the optical excitation/detection module. Experimental details are given to characterize the level of performance, stability, reliability, accuracy, and sensitivity of the prototype system. A typical temperature profile from a PCR amplification process and an electropherogram of a commercial size standard (GeneScan 500™, Applied Biosystems) separation are shown to assess the relevance of the instrument to forensic applications. Finally, we present a profile from an automated integrated run where lysed cells from a buccal swab were introduced in the system and no further human intervention was required to complete the analysis.
Analyst | 2012
Matthew Estes; Jianing Yang; Brett Duane; Stan Smith; Carla Brooks; Alan Nordquist; Frederic Zenhausern
This study reports the design, prototyping, and assay development of multiplexed polymerase chain reaction (PCR) on a plastic microfluidic device. Amplification of 17 DNA loci is carried out directly on-chip as part of a system for continuous workflow processing from sample preparation (SP) to capillary electrophoresis (CE). For enhanced performance of on-chip PCR amplification, improved control systems have been developed making use of customized Peltier assemblies, valve actuators, software, and amplification chemistry protocols. Multiple enhancements to the microfluidic chip design have been enacted to improve the reliability of sample delivery through the various on-chip modules. This work has been enabled by the encapsulation of PCR reagents into a solid phase material through an optimized Solid Phase Encapsulating Assay Mix (SPEAM) bead-based hydrogel fabrication process. SPEAM bead technology is reliably coupled with precise microfluidic metering and dispensing for efficient amplification and subsequent DNA short tandem repeat (STR) fragment analysis. This provides a means of on-chip reagent storage suitable for microfluidic automation, with the long shelf-life necessary for point-of-care (POC) or field deployable applications. This paper reports the first high quality 17-plex forensic STR amplification from a reference sample in a microfluidic chip with preloaded solid phase reagents, that is designed for integration with up and downstream processing.
Forensic Science International-genetics | 2014
Jianing Yang; Carla Brooks; Matthew Estes; Cedric Hurth; Frederic Zenhausern
Fully automated rapid forensic DNA analysis requires integrating several multistep processes onto a single microfluidic platform, including substrate lysis, extraction of DNA from the released lysate solution, multiplexed PCR amplification of STR loci, separation of PCR products by capillary electrophoresis, and analysis for allelic peak calling. Over the past several years, most of the rapid DNA analysis systems developed started with the reference swab sample lysate and involved an off-chip lysis of collected substrates. As a result of advancement in technology and chemistry, addition of a microfluidic module for swab sample lysis has been achieved in a few of the rapid DNA analysis systems. However, recent reports on integrated rapid DNA analysis systems with swab-in and answer-out capability lack any quantitative and qualitative characterization of the swab-in sample lysis module, which is important for downstream forensic sample processing. Maximal collection and subsequent recovery of the biological material from the crime scene is one of the first and critical steps in forensic DNA technology. Herein we present the design, fabrication and characterization of an integratable swab lysis cartridge module and the test results obtained from different types of commonly used forensic swab samples, including buccal, saliva, and blood swab samples, demonstrating the compatibility with different downstream DNA extraction chemistries. This swab lysis cartridge module is easy to operate, compatible with both forensic and microfluidic requirements, and ready to be integrated with our existing automated rapid forensic DNA analysis system. Following the characterization of the swab lysis module, an integrated run from buccal swab sample-in to the microchip CE electropherogram-out was demonstrated on the integrated prototype instrument. Therefore, in this study, we demonstrate that this swab lysis cartridge module is: (1) functionally, comparable with routine benchtop lysis, (2) compatible with various types of swab samples and chemistries, and (3) integratable to achieve a micro total analysis system (μTAS) for rapid DNA analysis.
Electrophoresis | 2012
Cedric Hurth; Jian Gu; Maurice J. Aboud; Matthew Estes; Alan Nordquist; Bruce R. McCord; Frederic Zenhausern
We report the design and performance validation of microfluidic separation technologies for human identification using a disposable plastic device suitable for integration into an automated rapid DNA analysis system. A fabrication process for a 15‐cm long hot‐embossed plastic microfluidic devices with a smooth semielliptical cross section out of cyclic olefin copolymer is presented. We propose a mixed polymer solution of 95% w/v hydroxyethylcellulose and 5% w/v polyvinylpyrrolidone for a final polymer concentration of 2.5 or 3.0% to be used as coating and sieving matrix for DNA separation. This formulation allows preparing the microchip without pretreatment in a single‐loading step and provides high‐resolution separation (≈1.2 bp for fragments <200 bp), which is superior to existing commercial matrices under the same conditions. The hot‐embossed device performance is characterized and compared to injection‐molded devices made out of cyclic olefin copolymer based on their respective injector geometry, channel shape, and surface charges. Each device design is assessed by fluorescence videomicroscopy to evaluate the formation of injection plugs, then by comparing electropherograms for the separation of a DNA size standard relevant to human identification.
Physical Chemistry Chemical Physics | 2013
Matthew Estes; Cedric Hurth; Matthew Barrett; Frederic Zenhausern
We report an on-chip gradient generator that has been designed, modelled, fabricated, and characterized to facilitate temporal tuning of several unique gradients in parallel for multiple applications. This design allows for steady state programming of the intensities across multiple orders of magnitude while producing exponential, linear, and logarithmic gradient profiles. The magnitude of the gradients is controlled through regulating the ratio of the two on-chip flow inlets without the need for valves or other active mixers. On-chip binding of biotin by a fluorescent streptavidin complex creates a diffusive barrier that regulates access to the gradient inlets, providing a second orthogonal mechanism for regulating the microgradient intensities. The device is also characterized using an on-chip enzymatic reaction to produce an array of tuneable product concentrations within the various microchannels.
Archive | 2010
Frederic Zenhausern; Alan Nordquist; Ralf Lenigk; Cedric Hurth; Jianing Yang; Xiaojia Chen; Matthew Estes; John Lee-Edghill; Nina Moran; Andrew Hopwood; Pieris Koumi
Archive | 2013
Frederic Zenhausern; Matthew Estes; Paul Wilmes; Pranjul Shah
Archive | 2013
Frederic Zenhausern; Matthew Estes; Jianing Yang