Cédric Jacquard
University of Reims Champagne-Ardenne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cédric Jacquard.
Microbiology and Molecular Biology Reviews | 2016
Essaid Ait Barka; Parul Vatsa; Lisa Sanchez; Nathalie Gaveau-Vaillant; Cédric Jacquard; Hans-Peter Klenk; Christophe Clément; Yder Ouhdouch; Gilles P. van Wezel
SUMMARY Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum.
Plant Cell Reports | 2006
Cédric Jacquard; R. Asakaviciute; A. M. Hamalian; Rajbir S. Sangwan; Pierre Devaux; Christophe Clément
The effect of donor plants annual cycle and anther/spike position on the production of microspore-derived plants and albinism were studied. We used the winter cv. Igri and the spring cv. Cork, known to respond similarly in anther culture but to produce 78% and 2% of green plants, respectively. In both cvs. the number of microspore-derived plants was significantly higher when the anthers were collected from January to July than from August to December. However, during this period the proportion of albino plants was not altered. Conversely, the anther response decreased from 76.6 to 31.5% in Igri and from 58.8 to 32.0% in Cork when the donor spike originates from the main shoot or the fourth tiller. Significantly, anthers collected from spike of the second tiller enabled us to drastically increase the proportion of regenerated green plantlets, by 16% in Igri and 1800% in Cork.
Plant Science | 2002
Geneviève Wojnarowiez; Cédric Jacquard; P. Devaux; Rajbir S. Sangwan; Christophe Clément
In order to improve the yield of androgenesis in barley, copper sulfate was tested during the successive steps of anther culture at various concentrations. The best results were obtained when copper sulfate was added at 10 μM (100 fold higher than the control) during both the pretreatment and the culture phases. Under these conditions, the rate of responding anthers increased from 57.3 to 72.3%, the number of regenerated plantlets from 2.4 to 11.1 per responding anther and the proportion of albino plantlets was reduced from 13 to 10.8%. The addition of copper sulfate during plantlet regeneration did not further improve the yield of androgenesis. The positive influence of copper sulfate was characterized by an increase of microspore survival during anther culture and by a synchronization of the first symetric division around the seventh day of culture.
Molecular Plant Pathology | 2015
Giovanni Farace; Olivier Fernandez; Lucile Jacquens; François Coutte; François Krier; Philippe Jacques; Christophe Clément; Essaid Ait Barka; Cédric Jacquard; Stéphan Dorey
Non-self-recognition of microorganisms partly relies on the perception of microbe-associated molecular patterns (MAMPs) and leads to the activation of an innate immune response. Bacillus subtilis produces three main families of cyclic lipopeptides (LPs), namely surfactins, iturins and fengycins. Although LPs are involved in induced systemic resistance (ISR) activation, little is known about defence responses induced by these molecules and their involvement in local resistance to fungi. Here, we showed that purified surfactin, mycosubtilin (iturin family) and plipastatin (fengycin family) are perceived by grapevine plant cells. Although surfactin and mycosubtilin stimulated grapevine innate immune responses, they differentially activated early signalling pathways and defence gene expression. By contrast, plipastatin perception by grapevine cells only resulted in early signalling activation. Gene expression analysis suggested that mycosubtilin activated salicylic acid (SA) and jasmonic acid (JA) signalling pathways, whereas surfactin mainly induced an SA-regulated response. Although mycosubtilin and plipastatin displayed direct antifungal activity, only surfactin and mycosubtilin treatments resulted in a local long-lasting enhanced tolerance to the necrotrophic fungus Botrytis cinerea in grapevine leaves. Moreover, challenge with specific strains overproducing surfactin and mycosubtilin led to a slightly enhanced stimulation of the defence response compared with the LP-non-producing strain of B. subtilis. Altogether, our results provide the first comprehensive view of the involvement of LPs from B. subtilis in grapevine plant defence and local resistance against the necrotrophic pathogen Bo. cinerea. Moreover, this work is the first to highlight the ability of mycosubtilin to trigger an immune response in plants.
Planta | 2009
Cédric Jacquard; Florence Mazeyrat-Gourbeyre; Pierre Devaux; Kim Boutilier; Fabienne Baillieul; Christophe Clément
Microspore embryogenesis (ME) is a process in which the gametophytic pollen programme of the microspore is reorientated towards a new embryo sporophytic programme. This process requires a stress treatment, usually performed in the anther or isolated microspores for several days. Despite the universal use of stress to induce ME, very few studies have addressed the physiological processes that occur in the anther during this step. To further understand the processes triggered by stress treatment, we followed the response of anthers by measuring the expression of stress-related genes in two barley (Hordeum vulgare L.) cultivars differing in their ME response. Genes encoding enzymes involved in oxidative stress (glutathione-S-transferase, GST; oxalate oxidase, OxO), in the synthesis of jasmonic acid (13-lipoxygenase, Lox; allene oxide cyclase, AOC; allene oxide synthase, AOS) and in the phenylpropanoid pathway (phenylalanine ammonia lyase, PAL), as well as those encoding PR proteins (Barwin, chitinase 2b, Chit 2b; glucanase, Gluc; basic pathogenesis-related protein 1, PR1; pathogenesis-related protein 10,PR10) were up-regulated in whole anthers upon stress treatment, indicating that anther perceives stress and reacts by triggering general plant defence mechanisms. In particular, both OxO and Chit 2b genes are good markers of anther reactivity owing to their high level of induction during the stress treatment. The effect of copper sulphate appeared to limit the expression of defence-related genes, which may be correlated with its positive effect on the yield of microspore embryos.
Archive | 2003
Cédric Jacquard; Geneviève Wojnarowiez; Christophe Clément
The production of doubled haploids through androgenesis represents a modern tool for the improvement of cultivated species enabling plant breeders to produce homozygous lines in a few months. In barley and other cereals, the use of androgenesis has generated a number of cultivars currently available and cultivated in many countries.
Plant Cell Reports | 2009
Cédric Jacquard; Frédérique Nolin; Carine Hécart; Dace Grauda; Isaak Rashal; Sandrine Dhondt-Cordelier; Rajbir S. Sangwan; Pierre Devaux; Florence Mazeyrat-Gourbeyre; Christophe Clément
Albinism remains a major problem in cereal improvement programs that rely on doubled haploid (DH) technology, and the factors controlling the phenomenon are not well understood. Here we report on the positive influence of copper on the production of DH plants obtained through microspore embryogenesis (ME) in recalcitrant cultivars of barley (Hordeum vulgare L.). The presence of copper sulphate in the anther pre-treatment medium improved green DH plant regeneration from cultivars known to produce exclusively albino plants using classical procedures. In plastids, the effect of copper was characterized by a decrease in starch and a parallel increase in internal membranes. The addition of copper sulphate in the ME pre-treatment medium should enable breeders to exploit the genetic diversity of recalcitrant cultivars through DH technology. We examined programmed cell death (PCD) during microspore development to determine whether PCD may interfere with the induction of ME and/or the occurrence of albinism. By examining the fate of nuclei in various anther cell layers, we demonstrated that the kinetics of PCD in anthers differed between the barley cultivars Igri and Cork that show a low and a high rate of albinism, respectively. However, no direct correlation between PCD in the anther cell layers and the rate of albinism was observed and copper had no influence on the PCD kinetic in these cultivars. It was concluded that albinism following ME was not due to PCD in anthers, but rather to another unknown phenomenon that appears to specifically affect plastids during microspore/pollen development.
Biotechnology for Biofuels | 2015
Nasir Mehmood; Eric Husson; Cédric Jacquard; Sandra Wewetzer; Jochen Büchs; Catherine Sarazin; Isabelle Gosselin
BackgroundIonic liquids (ILs) are considered as suitable candidates for lignocellulosic biomass pretreatment prior enzymatic saccharification and, obviously, for second-generation bioethanol production. However, several reports showed toxic or inhibitory effects of residual ILs on microorganisms, plants, and animal cells which could affect a subsequent enzymatic saccharification and fermentation process.ResultsIn this context, the impact of two hydrophilic imidazolium-based ILs already used in lignocellulosic biomass pretreatment was investigated: 1-ethyl-3-methylimidazolium acetate [Emim][OAc] and 1-ethyl-3-methylimidazolium methylphosphonate [Emim][MeO(H)PO2]. Their effects were assessed on the model yeast for ethanolic fermentation, Saccharomyces cerevisiae, grown in a culture medium containing glucose as carbon source and various IL concentrations. Classical fermentation parameters were followed: growth, glucose consumption and ethanol production, and two original factors: the respiratory status with the oxygen transfer rate (OTR) and carbon dioxide transfer rate (CTR) of yeasts which were monitored online by respiratory activity monitoring systems (RAMOS). In addition, yeast morphology was characterized by environmental scanning electron microscope (ESEM).The addition of ILs to the growth medium inhibited the OTR and switched the metabolism from respiration (conversion of glucose into biomass) to fermentation (conversion of glucose to ethanol). This behavior could be observed at low IL concentrations (≤5% IL) while above there is no significant growth or ethanol production. The presence of IL in the growth medium also induced changes of yeast morphology, which exhibited wrinkled, softened, and holed shapes. Both ILs showed the same effects, but [Emim][MeO(H)PO2] was more biocompatible than [Emim][OAc] and could be better tolerated by S. cerevisiae.ConclusionsThese two imidazolium-derived ILs were appropriate candidates for useful pretreatment of lignocellulosic biomass in the context of second-generation bioethanol production. This fundamental study provides additional information about the toxic effects of ILs. Indeed, the investigations highlighted the better tolerance by S. cerevisiae of [Emim][MeO(H)PO2] than [Emim][OAc].
Planta | 2011
Ettore Pacini; Cédric Jacquard; Christophe Clément
Vacuoles of several types can be observed in pollen throughout its development. Their physiological significance reflects the complexity of the biological process leading to functional pollen grains. Vacuolisation always occurs during pollen development but when ripe pollen is shed the extensive translucent vacuoles present in the vegetative parts in previous stages are absent. Vacuole functions vary according to developmental stage but in ripe pollen they are mainly storage sites for reserves. Vacuoles cause pollen to increase in size by water accumulation and therefore confer some degree of resistance to water stress. Modalities of vacuolisation occur in pollen in the same manner as in other tissues. In most cases, autophagic vacuoles degrade organelles, as in the microspore after meiosis, and can be regarded as cytoplasm clean-up following the transition from the diploid sporophytic to the haploid gametophytic state. This also occurs in the generative cell but not in sperm cells. Finally, vacuoles have a function when microspores are used for pollen embryogenesis in biotechnology being targets for stress induction and afterwards contributing to cytoplasmic rearrangement in competent microspores.
Journal of Experimental Botany | 2015
Mélodie Sawicki; Essaid Ait Barka; Christophe Clément; Nathalie Vaillant-Gaveau; Cédric Jacquard
In plants, flowering is a crucial process for reproductive success and continuity of the species through time. Fruit production requires the perfect development of reproductive structures. Abscission, a natural process, can occur to facilitate shedding of no longer needed, infected, or damaged organs. If stress occurs during flower development, abscission can intervene at flower level, leading to reduced yield. Flower abscission is a highly regulated developmental process simultaneously influenced and activated in response to exogenous (changing environmental conditions, interactions with microorganisms) and endogenous (physiological modifications) stimuli. During climate change, plant communities will be more susceptible to environmental stresses, leading to increased flower and fruit abscission, and consequently a decrease in fruit yield. Understanding the impacts of stress on the reproductive phase is therefore critical for managing future agricultural productivity. Here, current knowledge on flower/fruit abscission is summarized by focusing specifically on effects of environmental stresses leading to this process in woody plants. Many of these stresses impair hormonal balance and/or carbohydrate metabolism, but the exact mechanisms are far from completely known. Hormones are the abscission effectors and the auxin/ethylene balance is of particular importance. The carbohydrate pathway is the result of complex regulatory processes involving the balance between photosynthesis and mobilization of reserves. Hormones and carbohydrates together participate in complex signal transduction systems, especially in response to stress. The available data are discussed in relation to reproductive organ development and the process of abscission.