Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Essaid Ait Barka is active.

Publication


Featured researches published by Essaid Ait Barka.


Applied and Environmental Microbiology | 2006

Enhancement of Chilling Resistance of Inoculated Grapevine Plantlets with a Plant Growth-Promoting Rhizobacterium, Burkholderia phytofirmans Strain PsJN

Essaid Ait Barka; Jerzy Nowak; Christophe Clément

ABSTRACT In vitro inoculation of Vitis vinifera L. cv. Chardonnay explants with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN, increased grapevine growth and physiological activity at a low temperature. There was a relationship between endophytic bacterial colonization of the grapevine plantlets and their growth at both ambient (26°C) and low (4°C) temperatures and their sensitivities to chilling. The major benefits of bacterization were observed on root growth (11.8- and 10.7-fold increases at 26°C and 4°C, respectively) and plantlet biomass (6- and 2.2-fold increases at 26°C and 4°C, respectively). The inoculation with PsJN also significantly improved plantlet cold tolerance compared to that of the nonbacterized control. In nonchilled plantlets, bacterization enhanced CO2 fixation and O2 evolution 1.3 and 2.2 times, respectively. The nonbacterized controls were more sensitive to exposure to low temperatures than were the bacterized plantlets, as indicated by several measured parameters. Moreover, relative to the noninoculated controls, bacterized plantlets had significantly increased levels of starch, proline, and phenolics. These increases correlated with the enhancement of cold tolerance of the grapevine plantlets. In summary, B. phytofirmans strain PsJN inoculation stimulates grapevine growth and improves its ability to withstand cold stress.


Microbiology and Molecular Biology Reviews | 2016

Taxonomy, Physiology, and Natural Products of Actinobacteria

Essaid Ait Barka; Parul Vatsa; Lisa Sanchez; Nathalie Gaveau-Vaillant; Cédric Jacquard; Hans-Peter Klenk; Christophe Clément; Yder Ouhdouch; Gilles P. van Wezel

SUMMARY Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum.


Biological Control | 2002

Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth

Essaid Ait Barka; Sabine Gognies; Jerzy Nowak; J. C. Audran; Abdel Belarbi

Abstract A grapevine pathogen, Botrytis cinerea , produces characteristic gray mold symptoms on leaves and/or stems within 7 days following the inoculation. In this study we used a plant growth-promoting rhizobacterium, Pseudomonas sp. strain PsJN, which demonstrates an induction of plant growth in parallel with an antagonistic effect on in vitro growth and development of B. cinerea . The simultaneous in vitro co-culture of B. cinerea and bacterium did not stop the spread of fungus. However, when the fungus was introduced 2 days after bacterium inoculation, a clear inhibition of B. cinerea appeared around the zone of Pseudomonas inoculation. When in vitro bacterized plantlets were challenged with B. cinerea , the symptoms of gray mold failed to develop compared to nonbacterized controls. Microscopic observation of B. cinerea mycelium from the zone of contact between the fungus and with Pseudomonas sp. on the potato dextrose agar plate shows a growth disruption of fungal mycelium, coagulation, and leakage of protoplasm. The antagonist had no effect on the polygalacturonase activity of B. cinerea , meaning that the bacterium is not acting directly on the polygalacturonase of the fungus. It seems that the PsJN inhibits the growth of B. cinerea by disrupting cellular membranes and inducing cell death.


Journal of Experimental Botany | 2011

Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions

Sophie Bordiec; Sandra Paquis; Hélène Lacroix; Sandrine Dhondt; Essaid Ait Barka; Serge Kauffmann; Philippe Jeandet; Florence Mazeyrat-Gourbeyre; Christophe Clément; Fabienne Baillieul; Stéphan Dorey

Plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms that colonize the rhizosphere of many plant species and confer beneficial effects, such as an increase in plant growth. PGPR are also well known as inducers of systemic resistance to pathogens in plants. However, the molecular mechanisms involved locally after direct perception of these bacteria by plant cells still remain largely unknown. Burkholderia phytofirmans strain PsJN is an endophytic PGPR that colonizes grapevine and protects the plant against the grey mould disease caused by Botrytis cinerea. This report focuses on local defence events induced by B. phytofirmans PsJN after perception by the grapevine cells. It is demonstrated that, after addition to cell suspension cultures, the bacteria were tightly attaching to plant cells in a way similar to the grapevine non-host bacteria Pseudomonas syringae pv. pisi. B. phytofirmans PsJN perception led to a transient and monophasic extracellular alkalinization but no accumulation of reactive oxygen species or cell death were detected. By contrast, challenge with P. syringae pv. pisi induced a sustained and biphasic extracellular alkalinization, a two phases oxidative burst, and a HR-like response. Perception of the PGPR also led to the production of salicylic acid (SA) and the expression of a battery of defence genes that was, however, weaker in intensity compared with defence gene expression triggered by the non-host bacteria. Some defence genes up-regulated after B. phytofirmans PsJN challenge are specifically induced by exogenous treatment with SA or jasmonic acid, suggesting that both signalling pathways are activated by the PGPR in grapevine.


Molecular Plant-microbe Interactions | 2012

Burkholderia phytofirmans PsJN Primes Vitis vinifera L. and Confers a Better Tolerance to Low Nonfreezing Temperatures

Andreas Theocharis; Sophie Bordiec; Olivier Fernandez; Sandra Paquis; Sandrine Dhondt-Cordelier; Fabienne Baillieul; Christophe Clément; Essaid Ait Barka

Several endophytic bacteria reportedly induce resistance to biotic stress and abiotic stress tolerance in several plant species. Burkholderia phytofirmans PsJN is a plant-growth-promoting rhizobacterium (PGPR) that is able to colonize grapevine tissues and induce resistance to gray mold. Further, PsJN induces physiological changes that increase grapevine tolerance to low nonfreezing temperatures. To better understand how bacteria induced the observed phenomena, stress-related gene expression and metabolite accumulation were monitored in 6-week-old Chardonnay grapevine plantlets after exposure to low nonfreezing temperatures. Under normal conditions (26°C), plantlet bacterization had no significant effect on the monitored parameters. By contrast, at 4°C, both stress-related gene transcripts and metabolite levels increased earlier and faster, and reached higher levels in PsJN-bacterized plantlets than in nonbacterized counterparts, in accordance with priming phenomena. The recorded changes may be correlated with the tolerance to cold stress conferred by the presence of PsJN. This is the first time that PGPR-induced priming has been shown to protect plants against low-temperature stress. Moreover, 1 week after cold exposure, levels of stress-related metabolites had declined more in PsJN-bacterized plants, suggesting that the endophyte is involved in the cold acclimation process via the scavenging system.


Molecular Plant Pathology | 2015

Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine

Giovanni Farace; Olivier Fernandez; Lucile Jacquens; François Coutte; François Krier; Philippe Jacques; Christophe Clément; Essaid Ait Barka; Cédric Jacquard; Stéphan Dorey

Non-self-recognition of microorganisms partly relies on the perception of microbe-associated molecular patterns (MAMPs) and leads to the activation of an innate immune response. Bacillus subtilis produces three main families of cyclic lipopeptides (LPs), namely surfactins, iturins and fengycins. Although LPs are involved in induced systemic resistance (ISR) activation, little is known about defence responses induced by these molecules and their involvement in local resistance to fungi. Here, we showed that purified surfactin, mycosubtilin (iturin family) and plipastatin (fengycin family) are perceived by grapevine plant cells. Although surfactin and mycosubtilin stimulated grapevine innate immune responses, they differentially activated early signalling pathways and defence gene expression. By contrast, plipastatin perception by grapevine cells only resulted in early signalling activation. Gene expression analysis suggested that mycosubtilin activated salicylic acid (SA) and jasmonic acid (JA) signalling pathways, whereas surfactin mainly induced an SA-regulated response. Although mycosubtilin and plipastatin displayed direct antifungal activity, only surfactin and mycosubtilin treatments resulted in a local long-lasting enhanced tolerance to the necrotrophic fungus Botrytis cinerea in grapevine leaves. Moreover, challenge with specific strains overproducing surfactin and mycosubtilin led to a slightly enhanced stimulation of the defence response compared with the LP-non-producing strain of B. subtilis. Altogether, our results provide the first comprehensive view of the involvement of LPs from B. subtilis in grapevine plant defence and local resistance against the necrotrophic pathogen Bo. cinerea. Moreover, this work is the first to highlight the ability of mycosubtilin to trigger an immune response in plants.


Journal of Experimental Botany | 2015

Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission

Mélodie Sawicki; Essaid Ait Barka; Christophe Clément; Nathalie Vaillant-Gaveau; Cédric Jacquard

In plants, flowering is a crucial process for reproductive success and continuity of the species through time. Fruit production requires the perfect development of reproductive structures. Abscission, a natural process, can occur to facilitate shedding of no longer needed, infected, or damaged organs. If stress occurs during flower development, abscission can intervene at flower level, leading to reduced yield. Flower abscission is a highly regulated developmental process simultaneously influenced and activated in response to exogenous (changing environmental conditions, interactions with microorganisms) and endogenous (physiological modifications) stimuli. During climate change, plant communities will be more susceptible to environmental stresses, leading to increased flower and fruit abscission, and consequently a decrease in fruit yield. Understanding the impacts of stress on the reproductive phase is therefore critical for managing future agricultural productivity. Here, current knowledge on flower/fruit abscission is summarized by focusing specifically on effects of environmental stresses leading to this process in woody plants. Many of these stresses impair hormonal balance and/or carbohydrate metabolism, but the exact mechanisms are far from completely known. Hormones are the abscission effectors and the auxin/ethylene balance is of particular importance. The carbohydrate pathway is the result of complex regulatory processes involving the balance between photosynthesis and mobilization of reserves. Hormones and carbohydrates together participate in complex signal transduction systems, especially in response to stress. The available data are discussed in relation to reproductive organ development and the process of abscission.


Frontiers in Plant Science | 2015

Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana

Fan Su; Cédric Jacquard; Sandra Villaume; Jean Michel; Fanja Rabenoelina; Christophe Clément; Essaid Ait Barka; Sandrine Dhondt-Cordelier; Nathalie Vaillant-Gaveau

Several plant growth-promoting rhizobacteria (PGPR) are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN), on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers. Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyll. Impact of inoculation modes (either on seeds or by soil irrigation) and their effects overnight at 0, -1, or -3°C, were investigated by following photosystem II (PSII) activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A. thaliana responses but prevented the plasmalemma disruption under freezing stress.


Frontiers in Plant Science | 2016

Burkholderia phytofirmans PsJN Confers Grapevine Resistance against Botrytis cinerea via a Direct Antimicrobial Effect Combined with a Better Resource Mobilization

Lidiane Miotto-Vilanova; Cédric Jacquard; Barbara Courteaux; Laurence Wortham; Jean Michel; Christophe Clément; Essaid Ait Barka; Lisa Sanchez

Plant innate immunity serves as a surveillance system by providing the first line of powerful weapons to fight against pathogen attacks. Beneficial microorganisms and Microbial-Associated Molecular Patterns might act as signals to trigger this immunity. Burkholderia phytofirmans PsJN, a highly efficient plant beneficial endophytic bacterium, promotes growth in a wide variety of plants including grapevine. Further, the bacterium induces plant resistance against abiotic and biotic stresses. However, no study has deciphered triggered-mechanisms during the tripartite interaction between grapevine, B. phytofirmans PsJN and Botrytis cinerea. Herein, we showed that in contrast with classical rhizobacteria, which are restricted in the root system and act through ISR, B. phytofirmans PsJN is able to migrate until aerial part and forms at leaves surface a biofilm around B. cinerea mycelium to restrict the pathogen. Nevertheless, considering the endophytic level of PsJN in leaves, the plant protection efficacy of B. phytofirmans PsJN could not be explained solely by its direct antifungal effect. Deeper investigations showed a callose deposition, H2O2 production and primed expression of PR1, PR2, PR5, and JAZ only in bacterized-plantlets after pathogen challenge. The presence of PsJN modulated changes in leaf carbohydrate metabolism including gene expression, sugar levels, and chlorophyll fluorescence imaging after Botrytis challenge. Our findings indicated that protection induced by B. phytofirmans PsJN was multifaceted and relied on a direct antifungal effect, priming of defense mechanisms as well as the mobilization of carbon sources in grapevine leaf tissues.


Journal of Chromatography B | 2014

Purification of antibiotics from the biocontrol agent Streptomyces anulatus S37 by centrifugal partition chromatography

Olivier Couillerot; Souad Loqman; Alix Toribio; Jane Hubert; Léa Gandner; Jean-Marc Nuzillard; Yedir Ouhdouch; Christophe Clément; Essaid Ait Barka; Jean-Hugues Renault

A novel actinomycete strain, Streptomyces anulatus S37, has been isolated from the rhizosphere of healthy Moroccan Vitis vinifera on the basis on its ability to promote grapevine growth and to induce natural defences against various phytopathogens. In the present work, the main bioactive metabolites produced by S. anulatus S37 were isolated. A crude n-BuOH extract of the S37 fermentation broth was firstly partitioned in a biphasic solvent system composed of n-heptane, methanol, and water (5:1.5:3.5, v/v). The most active organic fraction (1.1g) as revealed by TLC-bioautography was subsequently separated by a two-step centrifugal partition chromatography procedure. The first separation was performed in the ascending mode at 6mL/min with the biphasic solvent system n-heptane, ethyl acetate, methanol and water (2:1:2:1, v/v), to finally recover 40mg of a pure compound identified as streptochlorin by NMR spectroscopy. In a second separation, the solvent system n-heptane, acetonitrile, and water (5:5:4, v/v) was used in the ascending mode at 3mL/min to purify 135mg of nigericin and 53mg of piericidin A1. Assays performed with the three compounds have confirmed their inhibitory impact on the growth of Botryris cinerea in dual confrontation and also on V. vinifera L. plantlets.

Collaboration


Dive into the Essaid Ait Barka's collaboration.

Top Co-Authors

Avatar

Christophe Clément

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Cédric Jacquard

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Lisa Sanchez

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Nathalie Vaillant-Gaveau

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Fabienne Baillieul

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Lucile Jacquens

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Mélodie Sawicki

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stéphan Dorey

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Marine Rondeau

University of Reims Champagne-Ardenne

View shared research outputs
Researchain Logo
Decentralizing Knowledge