Celestine J. Thomas
University of Montana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Celestine J. Thomas.
FEBS Letters | 2002
Celestine J. Thomas; Mili Kapoor; Shilpi Sharma; Huguette Bausinger; Umit Zyilan; Dan Lipsker; Daniel Hanau; Avadhesha Surolia
The kinetics of the interaction of lipopolysaccharide (LPS), lipopolysaccharide binding protein (LBP) and CD14 was studied using surface plasmon resonance. The association and dissociation rate constants for the binding of LPS and rsCD14 were 2.9×104 M−1 s−1 and 0.07 s−1 respectively, yielding a binding constant of 4.2×105 M−1. Significantly, the presence of LBP increased not only the association rate but also the association constant for the interaction between LPS and CD14 by three orders of magnitude. Our experimental results suggest that LBP interacts with LPS and CD14 to form a stable trimolecular complex that has significant functional implications as it allows monocytes to detect the presence of LPS at a concentration as low as 10 pg/ml or 2 pM, and to respond by secreting interleukin‐6. Thus, LBP is not merely transferring LPS to CD14 but it forms an integral part of the LPS–rLBP–rsCD14 complex.
Journal of Biological Chemistry | 2008
Celestine J. Thomas; Gregory G. Tall; Anirban Adhikari; Stephen R. Sprang
Microtubule pulling forces that govern mitotic spindle movement of chromosomes are tightly regulated by G-proteins. A host of proteins, including Gα subunits, Ric-8, AGS3, regulators of G-protein signalings, and scaffolding proteins, coordinate this vital cellular process. Ric-8A, acting as a guanine nucleotide exchange factor, catalyzes the release of GDP from various Gα·GDP subunits and forms a stable nucleotide-free Ric-8A:Gα complex. AGS3, a guanine nucleotide dissociation inhibitor (GDI), binds and stabilizes Gα subunits in their GDP-bound state. Because Ric-8A and AGS3 may recognize and compete for Gα·GDP in this pathway, we probed the interactions of a truncated AGS3 (AGS3-C; containing only the residues responsible for GDI activity), with Ric-8A:Gαil and that of Ric-8A with the AGS3-C:Gαil·GDP complex. Pulldown assays, gel filtration, isothermal titration calorimetry, and rapid mixing stopped-flow fluorescence spectroscopy indicate that Ric-8A catalyzes the rapid release of GDP from AGS3-C:Gαi1·GDP. Thus, Ric-8A forms a transient ternary complex with AGS3-C:Gαi1·GDP. Subsequent dissociation of AGS3-C and GDP from Gαi1 yields a stable nucleotide free Ric-8A·Gαi1 complex that, in the presence of GTP, dissociates to yield Ric-8A and Gαi1·GTP. AGS3-C does not induce dissociation of the Ric-8A·Gαi1 complex, even when present at very high concentrations. The action of Ric-8A on AGS3:Gαi1·GDP ensures unidirectional activation of Gα subunits that cannot be reversed by AGS3.
FEBS Letters | 2001
Kiran Bachhawat-Sikder; Celestine J. Thomas; Avadhesha Surolia
Galectin‐3, with a wide tissue distribution and marked developmental regulation, provides significant insights into the progression of various disease and developmental stages. Recognized by its specificity for galactose, a detailed characterization of its sugar binding ability has been investigated by isothermal titration calorimetry. The results presented here complement well with the earlier studies utilizing hapten inhibition assays. Among the various lactose derivatives studied, A‐tetrasaccharide emerged with the highest affinity for binding to galectin‐3 combining site. This blood group saccharide exhibited a binding affinity 37‐fold higher and a 102 kJ/mol more favorable change in enthalpy over lactose at 280 K indicating the existence of additional subsites for both the α1‐3‐linked N‐acetylgalactosamine at the non‐reducing end and the α1‐2‐linked L‐fucosyl residue. The thermodynamic parameters evaluated for other ligands substantiate further the carbohydrate recognition domain to be part of an extended binding site. Binding thermodynamics of galectin‐3 with the galactose derivatives are essentially enthalpically driven and exhibit compensatory changes in ΔH° and TΔS owing to solvent reorganization.
Journal of Biological Chemistry | 2010
Zhe Chen; Frank Medina; Mu Ya Liu; Celestine J. Thomas; Stephen R. Sprang; Paul C. Sternweis
Guanine nucleotide exchange factors (GEFs) catalyze exchange of GDP for GTP by stabilizing the nucleotide-free state of the small GTPases through their Dbl homology/pleckstrin homology (DH·PH) domains. Unconventionally, PDZ-RhoGEF (PRG), a member of the RGS-RhoGEFs, binds tightly to both nucleotide-free and activated RhoA (RhoA·GTP). We have characterized the interaction between PRG and activated RhoA and determined the structure of the PRG-DH·PH-RhoA·GTPγS (guanosine 5′-O-[γ-thio]triphosphate) complex. The interface bears striking similarity to a GTPase-effector interface and involves the switch regions in RhoA and a hydrophobic patch in PRG-PH that is conserved among all Lbc RhoGEFs. The two surfaces that bind activated and nucleotide-free RhoA on PRG-DH·PH do not overlap, and a ternary complex of PRG-DH·PH bound to both forms of RhoA can be isolated by size-exclusion chromatography. This novel interaction between activated RhoA and PH could play a key role in regulation of RhoGEF activity in vivo.
Molecular BioSystems | 2005
Vikrant M. Bhor; Celestine J. Thomas; Namita Surolia; Avadhesha Surolia
Endotoxic shock, a syndrome characterized by deranged hemodynamics, coagulation abnormalities, and multiple system organ failure is caused by the release into the circulation of lipopolysaccharide (LPS), the structurally diverse component of Gram-negative bacterial outer membranes, and is responsible for 60% mortality in humans. Polymyxin B (PMB), a cyclic, cationic peptide antibiotic, neutralizes endotoxin but induces severe side effects in the process. The potent endotoxin neutralizing ability of PMB, however, offers possibilities for designing non-toxic therapeutic agents for combating endotoxicosis. Amongst the numerous approaches for combating endotoxic shock, peptide mediated neutralization of LPS seems to be the most attractive one. The precise mode of binding of PMB to LPS and the structural features involved therein have been elucidated only recently using a variety of biophysical approaches. These suggest that efficient neutralization of endotoxin by PMB is not achieved by mere binding to LPS but requires its sequestration from the membrane. Incorporation of this feature into the design of endotoxin neutralizing peptides should lead to the development of effective antidotes for endotoxic shock.
Biophysical Journal | 2003
Celestine J. Thomas; V. Anbazhagan; M. Ramakrishnan; Nabil Ali Mohammed Sultan; Ira Surolia; Musti J. Swamy
PDC-109, the major protein of bovine seminal plasma, binds to sperm plasma membranes upon ejaculation and plays a crucial role in the subsequent events leading to fertilization. The binding process is mediated primarily by the specific interaction of PDC-109 with choline-containing phospholipids. In the present study the kinetics and mechanism of the interaction of PDC-109 with phospholipid membranes were investigated by the surface plasmon resonance technique. Binding of PDC-109 to different phospholipid membranes containing 20% cholesterol (wt/wt) indicated that binding occurs by a single-step mechanism. The association rate constant (k(1)) for the binding of PDC-109 to dimyristoylphosphatidylcholine (DMPC) membranes containing cholesterol was estimated to be 5.7 x 10(5) M(-1) s(-1) at 20 degrees C, while the values of k(1) estimated at the same temperature for the binding to membranes of negatively charged phospholipids such as dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidic acid (DMPA) containing 20% cholesterol (wt/wt) were at least three orders of magnitude lower. The dissociation rate constant (k(-1)) for the DMPC/PDC-109 system was found to be 2.7 x 10(-2) s(-1) whereas the k(-1) values obtained with DMPG and DMPA was about three to four times higher. From the kinetic data, the association constant for the binding of PDC-109 to DMPC was estimated as 2.1 x 10(7) M(-1). The association constants for different phospholipids investigated decrease in the order: DMPC > DMPG > DMPA > DMPE. Thus the higher affinity of PDC-109 for choline phospholipids is reflected in a faster association rate constant and a slower dissociation rate constant for DMPC as compared to the other phospholipids. Binding of PDC-109 to dimyristoylphosphatidylethanolamine and dipalmitoylphosphatidylethanolamine, which are also zwitterionic, was found to be very weak, clearly indicating that the charge on the lipid headgroup is not the determining factor for the binding. Analysis of the activation parameters indicates that the interaction of PDC-109 with DMPC membranes is favored by a strong entropic contribution, whereas negative entropic contribution is primarily responsible for the rather weak interaction of this protein with DMPA and DMPG.
Proceedings of the National Academy of Sciences of the United States of America | 2013
PuiYee Chan; Celestine J. Thomas; Stephen R. Sprang; Gregory G. Tall
We have shown that resistance to inhibitors of cholinesterase 8 (Ric-8) proteins regulate an early step of heterotrimeric G protein α (Gα) subunit biosynthesis. Here, mammalian and plant cell-free translation systems were used to study Ric-8A action during Gα subunit translation and protein folding. Gα translation rates and overall produced protein amounts were equivalent in mock and Ric-8A–immunodepleted rabbit reticulocyte lysate (RRL). GDP-AlF4−–bound Gαi, Gαq, Gα13, and Gαs produced in mock-depleted RRL had characteristic resistance to limited trypsinolysis, showing that these G proteins were folded properly. Gαi, Gαq, and Gα13, but not Gαs produced from Ric-8A–depleted RRL were not protected from trypsinization and therefore not folded correctly. Addition of recombinant Ric-8A to the Ric-8A–depleted RRL enhanced GDP-AlF4−–bound Gα subunit trypsin protection. Dramatic results were obtained in wheat germ extract (WGE) that has no endogenous Ric-8 component. WGE-translated Gαq was gel filtered and found to be an aggregate. Ric-8A supplementation of WGE allowed production of Gαq that gel filtered as a ∼100 kDa Ric-8A:Gαq heterodimer. Addition of GTPγS to Ric-8A–supplemented WGE Gαq translation resulted in dissociation of the Ric-8A:Gαq heterodimer and production of functional Gαq-GTPγS monomer. Excess Gβγ supplementation of WGE did not support functional Gαq production. The molecular chaperoning function of Ric-8 is to participate in the folding of nascent G protein α subunits.
Journal of Biological Chemistry | 2011
Klára Briknarová; Celestine J. Thomas; Joanne York; Jack H. Nunberg
Arenaviruses cause acute hemorrhagic fevers with high mortality. Entry of the virus into the host cell is mediated by the viral envelope glycoprotein, GPC. In contrast to other class I viral envelope glycoproteins, the mature GPC complex contains a cleaved stable signal peptide (SSP) in addition to the canonical receptor-binding (G1) and transmembrane fusion (G2) subunits. SSP is critical for intracellular transport of the GPC complex to the cell surface and for its membrane-fusion activity. Previous studies have suggested that SSP is retained in GPC through interaction with a zinc-binding domain (ZBD) in the cytoplasmic tail of G2. Here we used NMR spectroscopy to determine the structure of Junín virus (JUNV) ZBD (G2 residues 445–485) and investigate its interaction with a conserved Cys residue (Cys-57) in SSP. We show that JUNV ZBD displays a novel fold containing two zinc ions. One zinc ion is coordinated by His-447, His-449, Cys-455, and His-485. The second zinc ion is coordinated by His-459, Cys-467, and Cys-469 and readily accepts Cys-57 from SSP as the fourth ligand. Our studies describe the structural basis for retention of the unique SSP subunit and suggest a mechanism whereby SSP is positioned in the GPC complex to modulate pH-dependent membrane fusion.
PLOS ONE | 2011
Celestine J. Thomas; Klára Briknarová; Jonathan K. Hilmer; Navid Movahed; Brian Bothner; John P. Sumida; Gregory G. Tall; Stephen R. Sprang
Heterotrimeric G protein α subunits are activated upon exchange of GDP for GTP at the nucleotide binding site of Gα, catalyzed by guanine nucleotide exchange factors (GEFs). In addition to transmembrane G protein-coupled receptors (GPCRs), which act on G protein heterotrimers, members of the family cytosolic proteins typified by mammalian Ric-8A are GEFs for Gi/q/12/13-class Gα subunits. Ric-8A binds to Gα•GDP, resulting in the release of GDP. The Ric-8A complex with nucleotide-free Gαi1 is stable, but dissociates upon binding of GTP to Gαi1. To gain insight into the mechanism of Ric-8A-catalyzed GDP release from Gαi1, experiments were conducted to characterize the physical state of nucleotide-free Gαi1 (hereafter referred to as Gαi1[ ]) in solution, both as a monomeric species, and in the complex with Ric-8A. We found that Ric-8A-bound, nucleotide-free Gαi1 is more accessible to trypsinolysis than Gαi1•GDP, but less so than Gαi1[ ] alone. The TROSY-HSQC spectrum of [15N]Gαi1[ ] bound to Ric-8A shows considerable loss of peak intensity relative to that of [15N]Gαi1•GDP. Hydrogen-deuterium exchange in Gαi1[ ] bound to Ric-8A is 1.5-fold more extensive than in Gαi1•GDP. Differential scanning calorimetry shows that both Ric-8A and Gαi1•GDP undergo cooperative, irreversible unfolding transitions at 47° and 52°, respectively, while nucleotide-free Gαi1 shows a broad, weak transition near 35°. The unfolding transition for Ric-8A:Gαi1[ ] is complex, with a broad transition that peaks at 50°, suggesting that both Ric-8A and Gαi1[ ] are stabilized within the complex, relative to their respective free states. The C-terminus of Gαi1 is shown to be a critical binding element for Ric-8A, as is also the case for GPCRs, suggesting that the two types of GEF might promote nucleotide exchange by similar mechanisms, by acting as chaperones for the unstable and dynamic nucleotide-free state of Gα.
Proteins | 2001
R. Ravishankar; Celestine J. Thomas; Kaza Suguna; A. Surolia; M. Vijayan
The crystal structures of a monoclinic and a triclinic form of the peanut lectin–lactose complex, grown at pH 4.6, have been determined. They contain two and one crystallographically independent tetramers, respectively. The unusual “open” quaternary structure of the lectin, observed in the orthorhombic complex grown in neutral pH, is retained at the acidic pH. The sugar molecule is bound to three of the eight subunits in the monoclinic crystals, whereas the combining sites in four are empty. The lectin–sugar interactions are almost the same at neutral and acidic pH. A comparison of the sugar‐bound and free subunits indicates that the geometry of the combining site is relatively unaffected by ligand binding. The combining site of the eighth subunit in the monoclinic crystals is bound to a peptide stretch in a loop from a neighboring molecule. The same interaction exists in two subunits of the triclinic crystals, whereas density corresponding to sugar exists in the combining sites of the other two subunits. Solution studies show that oligopeptides with sequences corresponding to that in the loop bind to the lectin at acidic pH, but only with reduced affinity at neutral pH. The reverse is the case with the binding of lactose to the lectin. A comparison of the neutral and acidic pH crystal structures indicates that the molecular packing in the latter is directed to a substantial extent by the increased affinity of the peptide loop to the combining site at acidic pH. Proteins 2001;43:260–270.
Collaboration
Dive into the Celestine J. Thomas's collaboration.
Jawaharlal Nehru Centre for Advanced Scientific Research
View shared research outputs