Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanne York is active.

Publication


Featured researches published by Joanne York.


Journal of Virology | 2004

The Signal Peptide of the Junín Arenavirus Envelope Glycoprotein Is Myristoylated and Forms an Essential Subunit of the Mature G1-G2 Complex

Joanne York; Victor Romanowski; Min Lu; Jack H. Nunberg

ABSTRACT Arenaviruses comprise a diverse family of rodent-borne viruses that are responsible for recurring and emerging outbreaks of viral hemorrhagic fevers worldwide. The Junín virus, a member of the New World arenaviruses, is endemic to the pampas grasslands of Argentina and is the etiologic agent of Argentine hemorrhagic fever. In this study, we have analyzed the assembly and function of the Junín virus envelope glycoproteins. The mature envelope glycoprotein complex is proteolytically processed from the GP-C precursor polypeptide and consists of three noncovalently associated subunits, G1, G2, and a stable 58-amino-acid signal peptide. This tripartite organization is found both on virions of the attenuated Candid 1 strain and in cells expressing the pathogenic MC2 strain GP-C gene. Replacement of the Junín virus GP-C signal peptide with that of human CD4 has little effect on glycoprotein assembly while abolishing the ability of the G1-G2 complex to mediate pH-dependent cell-cell fusion. In addition, we demonstrate that the Junín virus GP-C signal peptide subunit is myristoylated at its N-terminal glycine. Alanine substitution for the modified glycine residue in the GP-C signal peptide does not affect formation of the tripartite envelope glycoprotein complex but markedly reduces its membrane fusion activity. In contrast to the classical view that signal peptides act primarily in targeting nascent polypeptides to the endoplasmic reticulum, we suggest that the signal peptide of the arenavirus GP-C may serve additional functions in envelope glycoprotein structure and trafficking.


Journal of Virology | 2006

Role of the stable signal peptide of Junín arenavirus envelope glycoprotein in pH-dependent membrane fusion.

Joanne York; Jack H. Nunberg

ABSTRACT The envelope glycoprotein of the arenaviruses (GP-C) is unusual in that the mature complex retains the cleaved, 58-amino-acid signal peptide. Association of this stable signal peptide (SSP) has been shown to be essential for intracellular trafficking and proteolytic maturation of the GP-C complex. We identify here a specific and previously unrecognized role of SSP in pH-dependent membrane fusion. Amino acid substitutions that alter the positive charge at lysine K33 in SSP affect the ability of GP-C to mediate cell-cell fusion and the threshold pH at which membrane fusion is triggered. Based on the presumed location of K33 at or near the luminal domain of SSP, we postulate that SSP interacts with the membrane-proximal or transmembrane regions of the G2 fusion protein. This unique organization of the GP-C complex may suggest novel strategies for intervention in arenavirus infection.


Journal of Biological Chemistry | 2008

Unique Small Molecule Entry Inhibitors of Hemorrhagic Fever Arenaviruses

Andrew M. Lee; Jillian M. Rojek; Christina F. Spiropoulou; Anette Gundersen; Wei Jin; Alex Shaginian; Joanne York; Jack H. Nunberg; Dale L. Boger; Michael B. A. Oldstone; Stefan Kunz

Viral hemorrhagic fevers caused by the arenaviruses Lassa virus in Africa and Machupo, Guanarito, Junin, and Sabia virus in South America are among the most devastating emerging human diseases with fatality rates of 15–35% and a limited antiviral therapeutic repertoire available. Here we used high throughput screening of synthetic combinatorial small molecule libraries to identify inhibitors of arenavirus infection using pseudotyped virion particles bearing the glycoproteins (GPs) of highly pathogenic arenaviruses. Our screening efforts resulted in the discovery of a series of novel small molecule inhibitors of viral entry that are highly active against both Old World and New World hemorrhagic arenaviruses. We observed potent inhibition of infection of human and primate cells with live hemorrhagic arenaviruses (IC50 = 500–800 nm). Investigations of the mechanism of action revealed that the candidate compounds efficiently block pH-dependent fusion by the arenavirus GPs (IC50 of 200–350 nm). Although our lead compounds were potent against phylogenetically distant arenaviruses, they did not show activity against other enveloped viruses with class I viral fusion proteins, indicating specificity for arenavirus GP-mediated membrane fusion.


Journal of Virology | 2008

pH-Induced Activation of Arenavirus Membrane Fusion Is Antagonized by Small-Molecule Inhibitors

Joanne York; Dongcheng Dai; Sean M. Amberg; Jack H. Nunberg

ABSTRACT The arenavirus envelope glycoprotein (GPC) mediates viral entry through pH-induced membrane fusion in the endosome. This crucial process in the viral life cycle can be specifically inhibited in the New World arenaviruses by the small-molecule compound ST-294. Here, we show that ST-294 interferes with GPC-mediated membrane fusion by targeting the interaction of the G2 fusion subunit with the stable signal peptide (SSP). We demonstrate that amino acid substitutions at lysine-33 of the Junín virus SSP confer resistance to ST-294 and engender de novo sensitivity to ST-161, a chemically distinct inhibitor of the Old World Lassa fever virus. These compounds, as well as a broadly active inhibitor, ST-193, likely share a molecular target at the SSP-G2 interface. We also show that both ST-294 and ST-193 inhibit pH-induced dissociation of the G1 receptor-binding subunit from GPC, a process concomitant with fusion activation. Interestingly, the inhibitory activity of these molecules can in some cases be overcome by further lowering the pH used for activation. Our results suggest that these small molecules act to stabilize the prefusion GPC complex against acidic pH. The pH-sensitive interaction between SSP and G2 in GPC represents a robust molecular target for the development of antiviral compounds for the treatment of arenavirus hemorrhagic fevers.


Journal of Virology | 2006

Role of the Stable Signal Peptide and Cytoplasmic Domain of G2 in Regulating Intracellular Transport of the Junín Virus Envelope Glycoprotein Complex

Sudhakar S. Agnihothram; Joanne York; Jack H. Nunberg

ABSTRACT Enveloped viruses utilize the membranous compartments of the host cell for the assembly and budding of new virion particles. In this report, we have investigated the biogenesis and trafficking of the envelope glycoprotein (GP-C) of the Junín arenavirus. The mature GP-C complex is unusual in that it retains a stable signal peptide (SSP) as an essential component in association with the typical receptor-binding (G1) and transmembrane fusion (G2) subunits. We demonstrate that, in the absence of SSP, the G1-G2 precursor is restricted to the endoplasmic reticulum (ER). This constraint is relieved by coexpression of SSP in trans, allowing transit of the assembled GP-C complex through the Golgi and to the cell surface, the site of arenavirus budding. Transport of a chimeric CD4 glycoprotein bearing the transmembrane and cytoplasmic domains of G2 is similarly regulated by SSP association. Truncations to the cytoplasmic domain of G2 abrogate SSP association yet now permit transport of the G1-G2 precursor to the cell surface. Thus, the cytoplasmic domain of G2 is an important determinant for both ER localization and its control through SSP binding. Alanine mutations to either of two dibasic amino acid motifs in the G2 cytoplasmic domain can also mobilize the G1-G2 precursor for transit through the Golgi. Taken together, our results suggest that SSP binding masks endogenous ER localization signals in the cytoplasmic domain of G2 to ensure that only the fully assembled, tripartite GP-C complex is transported for virion assembly. This quality control process points to an important role of SSP in the structure and function of the arenavirus envelope glycoprotein.


Journal of Virology | 2001

Antibody Binding and Neutralization of Primary and T-Cell Line-Adapted Isolates of Human Immunodeficiency Virus Type 1

Joanne York; Kathryn E. Follis; Meg Trahey; Phillipe N. Nyambi; Susan Zolla-Pazner; Jack H. Nunberg

ABSTRACT The relative resistance of human immunodeficiency virus type 1 (HIV-1) primary isolates (PIs) to neutralization by a wide range of antibodies remains a theoretical and practical barrier to the development of an effective HIV vaccine. One model to account for the differential neutralization sensitivity between Pls and laboratory (or T-cell line-adapted [TCLA]) strains of HIV suggests that the envelope protein (Env) complex is made more accessible to antibody binding as a consequence of adaptation to growth in established cell lines. Here, we revisit this question using genetically related PI and TCLA viruses and molecularly cloned env genes. By using complementary techniques of flow cytometry and virion binding assays, we show that monoclonal antibodies targeting the V3 loop, CD4-binding site, CD4-induced determinant of gp120, or the ectodomain of gp41 bind equally well to PI and TCLA Env complexes, despite large differences in neutralization outcome. The data suggest that the differential neutralization sensitivity of PI and TCLA viruses may derive not from differences in the initial antibody binding event but rather from differences in the subsequent functioning of the PI and TCLA Envs during virus entry. An understanding of these as yet undefined differences may enhance our ability to generate broadly neutralizing HIV vaccine immunogens.


Journal of Virology | 2007

Bitopic Membrane Topology of the Stable Signal Peptide in the Tripartite Junín Virus GP-C Envelope Glycoprotein Complex

Sudhakar S. Agnihothram; Joanne York; Meg Trahey; Jack H. Nunberg

ABSTRACT The stable signal peptide (SSP) of the GP-C envelope glycoprotein of the Junín arenavirus plays a critical role in trafficking of the GP-C complex to the cell surface and in its membrane fusion activity. SSP therefore may function on both sides of the lipid membrane. In this study, we have investigated the membrane topology of SSP by confocal microscopy of cells treated with the detergent digitonin to selectively permeabilize the plasma membrane. By using an affinity tag to mark the termini of SSP in the properly assembled GP-C complex, we find that both the N and C termini reside in the cytosol. Thus, SSP adopts a bitopic topology in which the C terminus is translocated from the lumen of the endoplasmic reticulum to the cytoplasm. This model is supported by (i) the presence of two conserved hydrophobic regions in SSP (hφ1 and hφ2) and (ii) our previous demonstration that lysine-33 in the ectodomain loop is essential for pH-dependent membrane fusion. Moreover, we demonstrate that the introduction of a charged side chain or single amino acid deletion in the membrane-spanning hφ2 region significantly diminishes SSP association in the GP-C complex and abolishes membrane fusion activity. Taken together, our results suggest that bitopic membrane insertion of SSP is centrally important in the assembly and function of the tripartite GP-C complex.


Viruses | 2012

The Curious Case of Arenavirus Entry, and its Inhibition

Jack H. Nunberg; Joanne York

Arenaviruses comprise a diverse family of enveloped negative-strand RNA viruses that are endemic to specific rodent hosts worldwide. Several arenaviruses cause severe hemorrhagic fevers in humans, including Junín and Machupo viruses in South America and Lassa fever virus in western Africa. Arenavirus entry into the host cell is mediated by the envelope glycoprotein complex, GPC. The virion is endocytosed on binding to a cell-surface receptor, and membrane fusion is initiated in response to physiological acidification of the endosome. As with other class I virus fusion proteins, GPC-mediated membrane fusion is promoted through a regulated sequence of conformational changes leading to formation of the classical postfusion trimer-of-hairpins structure. GPC is, however, unique among the class I fusion proteins in that the mature complex retains a stable signal peptide (SSP) as a third subunit, in addition to the canonical receptor-binding and fusion proteins. We will review the curious properties of the tripartite GPC complex and describe evidence that SSP interacts with the fusion subunit to modulate pH-induced activation of membrane fusion. This unusual solution to maintaining the metastable prefusion state of GPC on the virion and activating the class I fusion cascade at acidic pH provides novel targets for antiviral intervention.


Virology | 2006

Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry

Kathryn E. Follis; Joanne York; Jack H. Nunberg

Abstract The fusogenic potential of Class I viral envelope glycoproteins is activated by proteloytic cleavage of the precursor glycoprotein to generate the mature receptor-binding and transmembrane fusion subunits. Although the coronavirus (CoV) S glycoproteins share membership in this class of envelope glycoproteins, cleavage to generate the respective S1 and S2 subunits appears absent in a subset of CoV species, including that responsible for the severe acute respiratory syndrome (SARS). To determine whether proteolytic cleavage of the S glycoprotein might be important for the newly emerged SARS-CoV, we introduced a furin recognition site at single basic residues within the putative S1–S2 junctional region. We show that furin cleavage at the modified R667 position generates discrete S1 and S2 subunits and potentiates membrane fusion activity. This effect on the cell–cell fusion activity by the S glycoprotein is not, however, reflected in the infectivity of pseudotyped lentiviruses bearing the cleaved glycoprotein. The lack of effect of furin cleavage on virion infectivity mirrors that observed in the normally cleaved S glycoprotein of the murine coronavirus and highlights an additional level of complexity in coronavirus entry.


Virology | 2005

Genetic analysis of heptad-repeat regions in the G2 fusion subunit of the Junín arenavirus envelope glycoprotein

Joanne York; Sudhakar S. Agnihothram; Victor Romanowski; Jack H. Nunberg

Abstract The G2 fusion subunit of the Junín virus envelope glycoprotein GP-C contains two hydrophobic heptad-repeat regions that are postulated to form a six-helix bundle structure required for the membrane fusion activity of Class I viral fusion proteins. We have investigated the role of these heptad-repeat regions and, specifically, the importance of the putative interhelical a and d position sidechains by using alanine-scanning mutagenesis. All the mutant glycoproteins were expressed and transported to the cell surface. Proteolytic maturation at the subtilisin kexin isozyme-1/site-1-protease (SKI-1/S1P) cleavage site was observed in all but two of the mutants. Among the adequately cleaved mutant glycoproteins, four positions in the N-terminal region (I333, L336, L347 and L350) and two positions in the C-terminal region (R392 and W395) were shown to be important determinants of cell–cell fusion. Taken together, our results indicate that α-helical coiled-coil structures are likely critical in promoting arenavirus membrane fusion. These findings support the inclusion of the arenavirus GP-C among the Class I viral fusion proteins and suggest pharmacologic and immunologic strategies for targeting arenavirus infection and hemorrhagic fever.

Collaboration


Dive into the Joanne York's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale L. Boger

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Lu

University of Montana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge