Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Celine Bonnefous is active.

Publication


Featured researches published by Celine Bonnefous.


Journal of Medicinal Chemistry | 2015

Identification of GDC-0810 (ARN-810), an Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) that Demonstrates Robust Activity in Tamoxifen-Resistant Breast Cancer Xenografts

Andiliy G. Lai; Mehmet Kahraman; Steven P. Govek; Johnny Y. Nagasawa; Celine Bonnefous; Jackie Julien; Karensa Douglas; John Sensintaffar; Nhin Lu; Kyoung-Jin Lee; Anna Aparicio; Josh Kaufman; Jing Qian; Gang Shao; Rene Prudente; Michael J. Moon; James D. Joseph; Beatrice Darimont; Daniel Brigham; Kate Grillot; Richard A. Heyman; Peter Rix; Jeffrey H. Hager; Nicholas D. Smith

Approximately 80% of breast cancers are estrogen receptor alpha (ER-α) positive, and although women typically initially respond well to antihormonal therapies such as tamoxifen and aromatase inhibitors, resistance often emerges. Although a variety of resistance mechanism may be at play in this state, there is evidence that in many cases the ER still plays a central role, including mutations in the ER leading to constitutively active receptor. Fulvestrant is a steroid-based, selective estrogen receptor degrader (SERD) that both antagonizes and degrades ER-α and is active in patients who have progressed on antihormonal agents. However, fulvestrant suffers from poor pharmaceutical properties and must be administered by intramuscular injections that limit the total amount of drug that can be administered and hence lead to the potential for incomplete receptor blockade. We describe the identification and characterization of a series of small-molecule, orally bioavailable SERDs which are potent antagonists and degraders of ER-α and in which the ER-α degrading properties were prospectively optimized. The lead compound 11l (GDC-0810 or ARN-810) demonstrates robust activity in models of tamoxifen-sensitive and tamoxifen-resistant breast cancer, and is currently in clinical trials in women with locally advanced or metastatic estrogen receptor-positive breast cancer.


Journal of Pharmacology and Experimental Therapeutics | 2008

Transposition of Three Amino Acids Transforms the Human Metabotropic Glutamate Receptor (mGluR)-3-Positive Allosteric Modulation Site to mGluR2, and Additional Characterization of the mGluR2-Positive Allosteric Modulation Site

Blake A. Rowe; Hervé Schaffhauser; Sylvia Morales; Laura S. Lubbers; Celine Bonnefous; Theodore M. Kamenecka; Jeffrey McQuiston; Lorrie P. Daggett

Glutamate is a major neurotransmitter in the central nervous system, and abnormal glutamate neurotransmission has been implicated in many neurological disorders, including schizophrenia, Alzheimers disease, Parkinsons disease, addiction, anxiety, depression, epilepsy, and pain. Metabotropic glutamate receptors (mGluRs) activate intracellular signaling cascades in a G protein-dependent manner, which offer the opportunity for developing drugs that regulate glutamate neurotransmission in a functionally selective manner. In the present study, we further characterize the human mGluR2 (hmGluR2) potentiator binding site by showing that the substitution of the three amino acids found to be required for hmGluR2 potentiation, specifically Ser688, Gly689, and Asn735, with the homologous hmGluR3 amino acids, inactivates the positive allosteric modulator activity of several structurally unique mGluR2 potentiators. Based on the characterization of the hmGluR2 potentiator binding site, we developed a novel scintillation proximity assay that was able to discriminate between compounds that were hmGluR2-specific potentiators, and those that were active on both hmGluR2 and hmGluR3. In addition, we substituted Ser688, Gly689, and Asn735 into hmGluR3 and created an active hmGluR2 allosteric modulation site on the hmGluR3 receptor.


Journal of Medicinal Chemistry | 2009

Discovery of Inducible Nitric Oxide Synthase (iNOS) Inhibitor Development Candidate KD7332, Part 1: Identification of a Novel, Potent, and Selective Series of Quinolinone iNOS Dimerization Inhibitors that are Orally Active in Rodent Pain Models

Celine Bonnefous; Joseph E. Payne; Jeffrey Roger Roppe; Hui Zhuang; Xiaohong Chen; Kent T. Symons; Phan M. Nguyen; Marciano Sablad; Natasha Rozenkrants; Yan Zhang; Li Wang; Daniel L. Severance; John P. Walsh; Nahid Yazdani; Andrew K. Shiau; Stewart A. Noble; Peter Rix; Tadimeti S. Rao; Christian A. Hassig; Nicholas D. Smith

There are three isoforms of dimeric nitric oxide synthases (NOS) that convert arginine to citrulline and nitric oxide. Inducible NOS is implicated in numerous inflammatory diseases and, more recently, in neuropathic pain states. The majority of existing NOS inhibitors are either based on the structure of arginine or are substrate competitive. We describe the identification from an ultra high-throughput screen of a novel series of quinolinone small molecule, nonarginine iNOS dimerization inhibitors. SAR studies on the screening hit, coupled with an in vivo lipopolysaccharide (LPS) challenge assay measuring plasma nitrates and drug levels, rapidly led to the identification of compounds 12 and 42--potent inhibitors of the human and mouse iNOS enzyme that were highly selective over endothelial NOS (eNOS). Following oral dosing, compounds 12 and 42 gave a statistical reduction in pain behaviors in the mouse formalin model, while 12 also statistically reduced neuropathic pain behaviors in the chronic constriction injury (Bennett) model.


Journal of Medicinal Chemistry | 2010

Discovery of dual inducible/neuronal nitric oxide synthase (iNOS/nNOS) inhibitor development candidate 4-((2-cyclobutyl-1H-imidazo[4,5-b]pyrazin-1-yl)methyl)-7,8-difluoroquinolin-2(1H)-one (KD7332) part 2: identification of a novel, potent, and selective series of benzimidazole-quinolinone iNOS/nNOS dimerization inhibitors that are orally active in pain models.

Joseph E. Payne; Celine Bonnefous; Kent T. Symons; Phan M. Nguyen; Marciano Sablad; Natasha Rozenkrants; Yan Zhang; Li Wang; Nahid Yazdani; Andrew K. Shiau; Stewart A. Noble; Peter Rix; Tadimeti S. Rao; Christian A. Hassig; Nicholas D. Smith

Three isoforms of nitric oxide synthase (NOS), dimeric enzymes that catalyze the formation of nitric oxide (NO) from arginine, have been identified. Inappropriate or excessive NO produced by iNOS and/or nNOS is associated with inflammatory and neuropathic pain. Previously, we described the identification of a series of amide-quinolinone iNOS dimerization inhibitors that although potent, suffered from high clearance and limited exposure in vivo. By conformationally restricting the amide of this progenitor series, we describe the identification of a novel series of benzimidazole-quinolinone dual iNOS/nNOS inhibitors with low clearance and sustained exposure in vivo. Compounds were triaged utilizing an LPS challenge assay coupled with mouse and rhesus pharmacokinetics and led to the identification of 4,7-imidazopyrazine 42 as the lead compound. 42 (KD7332) (J. Med. Chem. 2009, 52, 3047 - 3062) was confirmed as an iNOS dimerization inhibitor and was efficacious in the mouse formalin model of nociception and Chung model of neuropathic pain, without showing tolerance after repeat dosing. Further 42 did not affect motor coordination up to doses of 1000 mg/kg, demonstrating a wide therapeutic margin.


Molecular Cancer Therapeutics | 2008

KD5170, a novel mercaptoketone-based histone deacetylase inhibitor that exhibits broad spectrum antitumor activity in vitro and in vivo.

Christian A. Hassig; Kent T. Symons; Xin Guo; Phan-Manh Nguyen; Tami Annable; Paul L. Wash; Joseph E. Payne; David Jenkins; Celine Bonnefous; Carol Trotter; Yan Wang; John V. Anzola; Elena L. Milkova; Timothy Z. Hoffman; Sara J. Dozier; Brandon M. Wiley; Alan Saven; James W. Malecha; Robert L. Davis; Jerry Muhammad; Andrew K. Shiau; Stewart A. Noble; Tadimeti S. Rao; Nicholas D. Smith; Jeffrey H. Hager

Histone deacetylase (HDAC) inhibitors have garnered significant attention as cancer drugs. These therapeutic agents have recently been clinically validated with the market approval of vorinostat (SAHA, Zolinza) for treatment of cutaneous T-cell lymphoma. Like vorinostat, most of the small-molecule HDAC inhibitors in clinical development are hydroxamic acids, whose inhibitory activity stems from their ability to coordinate the catalytic Zn2+ in the active site of HDACs. We sought to identify novel, nonhydroxamate-based HDAC inhibitors with potentially distinct pharmaceutical properties via an ultra-high throughput small molecule biochemical screen against the HDAC activity in a HeLa cell nuclear extract. An α-mercaptoketone series was identified and chemically optimized. The lead compound, KD5170, exhibits HDAC inhibitory activity with an IC50 of 0.045 μmol/L in the screening biochemical assay and an EC50 of 0.025 μmol/L in HeLa cell–based assays that monitor histone H3 acetylation. KD5170 also exhibits broad spectrum classes I and II HDAC inhibition in assays using purified recombinant human isoforms. KD5170 shows significant antiproliferative activity against a variety of human tumor cell lines, including the NCI-60 panel. Significant tumor growth inhibition was observed after p.o. dosing in human HCT-116 (colorectal cancer), NCI-H460 (non–small cell lung carcinoma), and PC-3 (prostate cancer) s.c. xenografts in nude mice. In addition, a significant increase in antitumor activity and time to end-point occurred when KD5170 was combined with docetaxel in xenografts of the PC-3 prostate cancer cell line. The biological and pharmaceutical profile of KD5170 supports its continued preclinical and clinical development as a broad spectrum anticancer agent. [Mol Cancer Ther 2008;7(5):1054–65]


eLife | 2016

The selective estrogen receptor downregulator GDC-0810 is efficacious in diverse models of ER+ breast cancer

James Joseph; Beatrice Darimont; Wei Zhou; Alfonso Arrazate; Amy Young; Ellen Ingalla; Kimberly Walter; Robert A. Blake; Jim Nonomiya; Zhengyu Guan; Lorna Kategaya; Steven P. Govek; Andiliy Lai; Mehmet Kahraman; Dan Brigham; John Sensintaffar; Nhin Lu; Gang Shao; Jing Qian; Kate Grillot; Michael Moon; Rene Prudente; Eric D. Bischoff; Kyoung-Jin Lee; Celine Bonnefous; Karensa Douglas; Jackaline D. Julien; Johnny Nagasawa; Anna Aparicio; Josh Kaufman

ER-targeted therapeutics provide valuable treatment options for patients with ER+ breast cancer, however, current relapse and mortality rates emphasize the need for improved therapeutic strategies. The recent discovery of prevalent ESR1 mutations in relapsed tumors underscores a sustained reliance of advanced tumors on ERα signaling, and provides a strong rationale for continued targeting of ERα. Here we describe GDC-0810, a novel, non-steroidal, orally bioavailable selective ER downregulator (SERD), which was identified by prospectively optimizing ERα degradation, antagonism and pharmacokinetic properties. GDC-0810 induces a distinct ERα conformation, relative to that induced by currently approved therapeutics, suggesting a unique mechanism of action. GDC-0810 has robust in vitro and in vivo activity against a variety of human breast cancer cell lines and patient derived xenografts, including a tamoxifen-resistant model and those that harbor ERα mutations. GDC-0810 is currently being evaluated in Phase II clinical studies in women with ER+ breast cancer.


Bioorganic & Medicinal Chemistry Letters | 2008

Identification of KD5170: a novel mercaptoketone-based histone deacetylase inhibitor.

Joseph E. Payne; Celine Bonnefous; Christian A. Hassig; Kent T. Symons; Xin Guo; Phan-Manh Nguyen; Tami Annable; Paul L. Wash; Timothy Z. Hoffman; Tadimeti S. Rao; Andrew K. Shiau; James W. Malecha; Stewart A. Noble; Jeffrey H. Hager; Nicholas D. Smith

We report the identification of KD5170, a potent mercaptoketone-based Class I and II-histone deacetylase inhibitor that demonstrates broad spectrum cytotoxic activity against a range of human tumor-derived cell lines. KD5170 exhibits robust and sustained histone H3 hyperacetylation in HCT-116 xenograft tumors following single oral or i.v. dose and inhibition of tumor growth following chronic dosing.


Bioorganic & Medicinal Chemistry Letters | 2015

Optimization of an indazole series of selective estrogen receptor degraders: Tumor regression in a tamoxifen-resistant breast cancer xenograft

Steven P. Govek; Johnny Y. Nagasawa; Karensa Douglas; Andiliy G. Lai; Mehmet Kahraman; Celine Bonnefous; Anna Aparicio; Beatrice Darimont; Katherine Grillot; James D. Joseph; Joshua Kaufman; Kyoung-Jin Lee; Nhin Lu; Michael J. Moon; Rene Prudente; John Sensintaffar; Peter Rix; Jeffrey H. Hager; Nicholas D. Smith

Selective estrogen receptor degraders (SERDs) have shown promise for the treatment of ER+ breast cancer. Disclosed herein is the continued optimization of our indazole series of SERDs. Exploration of ER degradation and antagonism in vitro followed by in vivo antagonism and oral exposure culminated in the discovery of indazoles 47 and 56, which induce tumor regression in a tamoxifen-resistant breast cancer xenograft.


Molecular Pharmacology | 2009

KLYP956 is a Non-imidazole-Based Orally Active Inhibitor of Nitric Oxide Synthase Dimerization

Kent T. Symons; Mark E. Massari; Phan M. Nguyen; Tom T. Lee; Jeffrey Roger Roppe; Celine Bonnefous; Joseph E. Payne; Nicholas D. Smith; Stewart A. Noble; Marciano Sablad; Natasha Rozenkrants; Yan Zhang; Tadimeti S. Rao; Andrew K. Shiau; Christian A. Hassig

Nitric-oxide synthases (NOS) generate nitric oxide (NO) through the oxidation of l-arginine. Inappropriate or excessive production of NO by NOS is associated with the pathophysiology of various disease states. Efforts to treat these disorders by developing arginine mimetic, substrate-competitive NOS inhibitors as drugs have met with little success. Small-molecule-mediated inhibition of NOS dimerization represents an intriguing alternative to substrate-competitive inhibition. An ultra-high-throughput cell-based screen of 880,000 small molecules identified a novel quinolinone with inducible NOS (iNOS) inhibitory activity. Exploratory chemistry based on this initial screening hit resulted in the synthesis of KLYP956, which inhibits iNOS at low nanomolar concentrations. The iNOS inhibitory potency of KLYP956 is insensitive to changes in concentrations of the substrate arginine, or the cofactor tetrahydrobiopterin. Mechanistic analysis suggests that KLYP956 binds the oxygenase domain in the vicinity of the active site heme and inhibits iNOS and neuronal NOS (nNOS) by preventing the formation of enzymatically active dimers. Oral administration of KLYP956 [N-(3-chlorophenyl)-N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide] inhibits iNOS activity in a murine model of endotoxemia and blocks pain behaviors in a formalin model of nociception. KLYP956 thus represents the first nonimidazole-based inhibitor of iNOS and nNOS dimerization and provides a novel pharmaceutical alternative to previously described substrate competitive inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2012

Heteroaromatic-aminomethyl quinolones: Potent and selective iNOS inhibitors

Sergio G. Duron; Andrew Lindstrom; Celine Bonnefous; Hui Zhang; Xiaohong Chen; Kent T. Symons; Marciano Sablad; Natasha Rozenkrants; Yan Zhang; Li Wang; Nahid Yazdani; Andrew K. Shiau; Stewart A. Noble; Peter Rix; Tadimeti S. Rao; Christian A. Hassig; Nicholas D. Smith

The overproduction of nitric oxide during the biological response to inflammation by the nitric oxide synthase (NOS) enzymes have been implicated in the pathology of many diseases. By removal of the amide core from uHTS-derived quinolone 4, a new series highly potent heteroaromatic-aminomethyl quinolone iNOS inhibitors 8 were identified. SAR studies led to identification of piperazine 22 and pyrimidine 32, both of which reduced plasma nitrates following oral dosing in a mouse lipopolysaccharide challenge assay.

Collaboration


Dive into the Celine Bonnefous's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge