Céline Léon
University of Bordeaux
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Céline Léon.
Molecular Plant | 2010
Imène Hichri; Simon C. Heppel; Jérémy Pillet; Céline Léon; Stefan Czemmel; Serge Delrot; Virginie Lauvergeat; Jochen Bogs
Previous results indicated that in grapevine (Vitis vinifera), regulation of the flavonoid pathway genes by MYB transcription factors depends on their interaction with basic helix-loop-helix proteins (bHLHs). The present study describes the first functional characterization of a bHLH factor from grapevine named VvMYC1. This transcription factor is phylogenetically related to Arabidopsis bHLH proteins, which participate in the control of flavonoid biosynthesis and epidermal cell fate. Transient promoter and yeast two-hybrid assays demonstrated that VvMYC1 physically interacts with MYB5a, MYB5b, MYBA1/A2, and MYBPA1 to induce promoters of flavonoid pathway genes involved in anthocyanin and/or proanthocyanidin (PA) synthesis. Additionally, transient promoter assays revealed that VvMYC1 is involved in feedback regulation of its own expression. Transcript levels of VvMYC1 during berry development correlate with the synthesis of anthocyanins and PAs in skins and seeds of berries, suggesting that VvMYC1 is involved in the regulation of anthocyanins and PA synthesis in these organs. Likewise, transient expression of VvMYC1 and VvMYBA1 induces anthocyanin synthesis in grapevine suspension cells. These results suggest that VvMYC1 is part of the transcriptional cascade controlling anthocyanin and PA biosynthesis in grapevine.
Plant Molecular Biology | 2010
Sabine Guillaumie; Rim Mzid; Valérie Méchin; Céline Léon; Imène Hichri; Agnès Destrac-Irvine; Claudine Trossat-Magnin; Serge Delrot; Virginie Lauvergeat
Previous work has shown that transgenic tobacco plants constitutively over-expressing the Vitis vinifera L. transcription factor VvWRKY2 exhibit reduced susceptibility to necrotrophic fungal pathogens, suggesting that this transcription factor plays a role in grapevine response to phytopathogens. The work presented here characterizes the modifications in cell wall structure observed in the stems and petioles of these transgenic plants. Histochemical stainings of stem and petiole cross-sections using phloroglucinol or Maüle reagents revealed a delay in xylem formation, particularly in the petioles, and differences in lignin composition. Evaluation of lignin quantity and quality showed a decrease in the syringyl/guaiacyl ratio in both stem and petioles. Expression analysis using RT-PCR and potato microarrays showed that tobacco plants over-expressing VvWRKY2 exhibited altered expression of genes involved in lignin biosynthesis pathway and cell wall formation. The ability of VvWRKY2 to activate the promoter of the VvC4H gene, which is involved in the lignin biosynthetic pathway, was confirmed by transient transcriptional activation assays in tobacco protoplasts. Moreover, in situ hybridization revealed that VvWRKY2 is specifically expressed in cells undergoing lignification in young grapevine stems. Together, these results confirm that VvWRKY2 plays a role in regulating lignification in grapevine, possibly in response to biotic or abiotic stresses.
Journal of Experimental Botany | 2013
Zhan Wu Dai; Céline Léon; Regina Feil; John E. Lunn; Serge Delrot; Eric Gomès
Changes in carbohydrate metabolism during grape berry development play a central role in shaping the final composition of the fruit. The present work aimed to identify metabolic switches during grape development and to provide insights into the timing of developmental regulation of carbohydrate metabolism. Metabolites from central carbon metabolism were measured using high-pressure anion-exchange chromatography coupled to tandem mass spectrometry and enzymatic assays during the development of grape berries from either field-grown vines or fruiting cuttings grown in the greenhouse. Principal component analysis readily discriminated the various stages of berry development, with similar trajectories for field-grown and greenhouse samples. This showed that each stage of fruit development had a characteristic metabolic profile and provided compelling evidence that the fruit-bearing cuttings are a useful model system to investigate regulation of central carbon metabolism in grape berry. The metabolites measured showed tight coordination within their respective pathways, clustering into sugars and sugar-phosphate metabolism, glycolysis, and the tricarboxylic acid cycle. In addition, there was a pronounced shift in metabolism around veraison, characterized by rapidly increasing sugar levels and decreasing organic acids. In contrast, glycolytic intermediates and sugar phosphates declined before veraison but remained fairly stable post-veraison. In summary, these detailed and comprehensive metabolite analyses revealed the timing of important switches in primary carbohydrate metabolism, which could be related to transcriptional and developmental changes within the berry to achieve an integrated understanding of grape berry development. The results are discussed in a meta-analysis comparing metabolic changes in climacteric versus non-climacteric fleshy fruits.
Plant Cell Reports | 2008
Romain Fouquet; Céline Léon; Nathalie Ollat; François Barrieu
Aquaporins are membrane water channels that play critical roles in controlling the water content of cells and tissues. In this work, nine full-length cDNAs encoding putative aquaporins were isolated from grape berry cDNA libraries. A phylogenetic analysis conducted with 28 aquaporin genes identified in the grapevine genome and previously characterized aquaporins from Arabidopsis indicates that three cDNAs encode putative tonoplast aquaporins (TIPs) whereas six cDNAs belong to the plasma membrane aquaporin subfamily (PIPs). Specific probes designed on the 3′ untranslated regions of each cDNA were used for the preparation of cDNA macroarray filters and in situ hybridization experiments. Macroarray data indicate that expression levels of most TIP and PIP genes depend on grape berry developmental stages and point out to a global decrease of aquaporin gene expression during berry ripening. In young berries, high expression of aquaporin genes was preferentially observed in dividing and elongating cells and in cells involved in water and solutes transport. Taken together, the data provided in this paper indicate that aquaporins are implicated in various physiological aspects of grape berry development.
PLOS ONE | 2013
Chloé Marchive; Céline Léon; Christian Kappel; Pierre Coutos-Thévenot; Marie-France Corio-Costet; Serge Delrot; Virginie Lauvergeat
Most WRKY transcription factors activate expression of defence genes in a salicylic acid- and/or jasmonic acid-dependent signalling pathway. We previously identified a WRKY gene, VvWRKY1, which is able to enhance tolerance to fungal pathogens when it is overexpressed in tobacco. The present work analyzes the effects of VvWRKY1 overexpression in grapevine. Microarray analysis showed that genes encoding defence-related proteins were up-regulated in the leaves of transgenic 35S::VvWRKY1 grapevines. Quantitative RT-PCR analysis confirmed that three genes putatively involved in jasmonic acid signalling pathway were overexpressed in the transgenic grapes. The ability of VvWRKY1 to trans-activate the promoters of these genes was demonstrated by transient expression in grape protoplasts. The resistance to the causal agent of downy mildew, Plasmopara viticola, was enhanced in the transgenic plants. These results show that VvWRKY1 can increase resistance of grapevine against the downy mildew through transcriptional reprogramming leading to activation of the jasmonic acid signalling pathway.
Plant Physiology | 2013
Sabine Guillaumie; Andrea Ilg; Stéphane Réty; Maxime Brette; Claudine Trossat-Magnin; Stéphane Decroocq; Céline Léon; Céline Keime; Tao Ye; Raymonde Baltenweck-Guyot; Patricia Claudel; Louis Bordenave; Sandra Vanbrabant; Eric Duchêne; Serge Delrot; Philippe Darriet; Philippe Hugueney; Eric Gomès
Genetic and candidate gene approaches are combined to identify an O-methyltransferase with a major role in methoxypyrazine biosynthesis in grapevine. Methoxypyrazines (MPs) are strongly odorant volatile molecules with vegetable-like fragrances that are widespread in plants. Some grapevine (Vitis vinifera) varieties accumulate significant amounts of MPs, including 2-methoxy-3-isobutylpyrazine (IBMP), which is the major MP in grape berries. MPs are of particular importance in white Sauvignon Blanc wines. The typicality of these wines relies on a fine balance between the pea pod, capsicum character of MPs and the passion fruit/grapefruit character due to volatile thiols. Although MPs play a crucial role in Sauvignon varietal aromas, excessive concentrations of these powerful odorants alter wine quality and reduce consumer acceptance, particularly in red wines. The last step of IBMP biosynthesis has been proposed to involve the methoxylation of the nonvolatile precursor 2-hydroxy-3-isobutylpyrazine to give rise to the highly volatile IBMP. In this work, we have used a quantitative trait loci approach to investigate the genetic bases of IBMP biosynthesis. This has led to the identification of two previously uncharacterized S-adenosyl-methionine-dependent O-methyltransferase genes, termed VvOMT3 and VvOMT4. Functional characterization of these two O-methyltransferases showed that the VvOMT3 protein was highly specific and efficient for 2-hydroxy-3-isobutylpyrazine methylation. Based on its differential expression in high- and low-MP-producing grapevine varieties, we propose that VvOMT3 is a key gene for IBMP biosynthesis in grapevine.
Journal of Experimental Botany | 2010
Céline Camps; Christian Kappel; Pascal Lecomte; Céline Léon; Eric Gomès; Pierre Coutos-Thévenot; Serge Delrot
Eutypa dieback is a vascular disease that may severely affect vineyards throughout the world. In the present work, microarrays were made in order (i) to improve our knowledge of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) responses to Eutypa lata, the causal agent of Eutypa dieback; and (ii) to identify genes that may prevent symptom development. Qiagen/Operon grapevine microarrays comprising 14 500 probes were used to compare, under three experimental conditions (in vitro, in the greenhouse, and in the vineyard), foliar material of infected symptomatic plants (S+R+), infected asymptomatic plants (S–R+), and healthy plants (S–R–). These plants were characterized by symptom notation after natural (vineyard) or experimental (in vitro and greenhouse) infection, re-isolation of the fungus located in the lignified parts, and the formal identification of E. lata mycelium by PCR. Semi-quantitative real-time PCR experiments were run to confirm the expression of some genes of interest in response to E. lata. Their expression profiles were also studied in response to other grapevine pathogens (Erysiphe necator, Plasmopara viticola, and Botrytis cinerea). (i) Five functional categories of genes, that is those involved in metabolism, defence reactions, interaction with the environment, transport, and transcription, were up-regulated in S+R+ plants compared with S–R– plants. These genes, which cannot prevent infection and symptom development, are not specific since they were also up-regulated after infection by powdery mildew, downy mildew, and black rot. (ii) Most of the genes that may prevent symptom development are associated with the light phase of photosynthesis. This finding is discussed in the context of previous data on the mode of action of eutypin and the polypeptide fraction secreted by Eutypa.
Comptes Rendus Biologies | 2008
Mohsen Hanana; Laurent G. Deluc; Romain Fouquet; Samia Daldoul; Céline Léon; François Barrieu; Abdelwahed Ghorbel; Ahmed Mliki; Saïd Hamdi
To identify and isolate genes related to abiotic stresses (salinity and drought) tolerance in grapevine, a candidate gene approach was developed and allowed isolating a full-length cDNA of rd22 gene from the Cabernet Sauvignon variety. The latter, named Vvrd22, is a dehydration-responsive gene that is usually induced by the application of exogenous ABA. Details of the physicochemical parameters and structural properties (molecular mass, secondary structure, conserved domains and motives, putative post-translational modification sites...) of the encoded protein have also been elucidated. The expression study of Vvrd22 was carried out at the berry growth stages and at the level of plant organs and tissues as well as under both drought and salt stresses. The results showed that Vvrd22 is constitutively expressed at a low level in all analyzed tissues. Moreover, salt stress induced Vvrd22 expression, particularly for the tolerant variety (Razegui), contrary to the sensitive one (Syrah), which did not display any expression variation during the stress, which means that Vvrd22 is involved in salt stress response and that its expression level depends on regulatory mechanisms that are efficient only for the tolerant variety. On the other hand, under drought stress, Vvrd22 is induced in an identical manner for both tolerant and sensitive varieties. In addition, stress signal molecules such as ABA (lonely applied or in combination with sucrose) induced Vvrd22 expression, even at a low level. A minimal knowledge about the role and the functionality of this gene is necessary and constitutes a prerequisite condition before starting and including Vvrd22 in any program of improvement of grapevines abiotic stress tolerance.
Angiogenesis | 2013
Patricia Fergelot; Jean-Christophe Bernhard; Fabienne Soulet; Witold W. Kilarski; Céline Léon; Nathalie Courtois; Colette Deminière; John Herbert; Philipp Antczak; Francesco Falciani; Nathalie Rioux-Leclercq; Jean-Jacques Patard; Jean-Marie Ferriere; Alain Ravaud; Martin Hagedorn; Andreas Bikfalvi
The clear cell subtype of renal carcinoma (CCRCC) is highly vascularized and despite a slow progression rate, it is potentially a highly aggressive tumor. Although a doubling of median progression-free survival in CCRCC patients treated by targeted therapies has been observed, the fact that tumors escape after anti-VEGF treatment suggests alternative pathways. The chick chorioallantoic membrane (CAM) is a well-established model, which allows in vivo studies of tumor angiogenesis and the testing of anti-angiogenic molecules. However, only a few data exist on CCRCC grafted onto CAM. We aimed to validate herein the CAM as a suitable model for studying the development of CCRCC and the interactions with the surrounding stroma. Our study uses both CCRCC cell lines and fresh tumor samples after surgical resection. We demonstrate that in both cases CCRCC can be grafted onto the CAM, to survive and to induce an angiogenic process. We further provide insights into the transcriptional regulation of the model by performing a differential analysis of tumor-derived and stroma-derived transcripts.
Developmental Neurobiology | 2014
Sylvaine Guérit; Anne-Emilie Allain; Céline Léon; William Cazenave; Napoleone Ferrara; Pascal Branchereau; Andreas Bikfalvi
Although it has been documented that the nervous and the vascular systems share numerous analogies and are closely intermingled during development and pathological processes, interactions between the two systems are still poorly described. In this study, we investigated whether vascular endothelial growth factor (VEGF), which is a key regulator of vascular development, also modulates neuronal developmental processes. We report that VEGF enhances the gamma‐aminobutyric acid (GABA)/glycinergic but not glutamatergic synaptic activity in embryonic spinal motoneurons (MNs), without affecting MNs excitability. In response to VEGF, the frequency of these synaptic events but not their amplitude was increased. Blocking endogenous VEGF led to an opposite effect by decreasing frequency of synaptic events. We found that this effect occurred specifically at early developmental stages (E13.5 and E15.5) and vanished at the prenatal stage E17.5. Furthermore, VEGF was able to increase vesicular inhibitory amino acid transporter density at the MN membrane. Inhibition of single VEGF receptors did not modify electrophysiological parameters indicating receptor combinations or an alternative pathway. Altogether, our findings identify VEGF as a modulator of the neuronal activity during synapse formation and highlight a new ontogenic role for this angiogenic factor in the nervous system.