Frédérique Bitton
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frédérique Bitton.
The Plant Cell | 2004
Claire Lurin; Charles Andrés; Sébastien Aubourg; Mohammed Bellaoui; Frédérique Bitton; Clémence Bruyère; Michel Caboche; Cédrig Debast; José M. Gualberto; Beate Hoffmann; Alain Lecharny; Monique Le Ret; Marie-Laure Martin-Magniette; Hakim Mireau; Nemo Peeters; Jean-Pierre Renou; Boris Szurek; Ludivine Taconnat; Ian Small
The complete sequence of the Arabidopsis thaliana genome revealed thousands of previously unsuspected genes, many of which cannot be ascribed even putative functions. One of the largest and most enigmatic gene families discovered in this way is characterized by tandem arrays of pentatricopeptide repeats (PPRs). We describe a detailed bioinformatic analysis of 441 members of the Arabidopsis PPR family plus genomic and genetic data on the expression (microarray data), localization (green fluorescent protein and red fluorescent protein fusions), and general function (insertion mutants and RNA binding assays) of many family members. The basic picture that arises from these studies is that PPR proteins play constitutive, often essential roles in mitochondria and chloroplasts, probably via binding to organellar transcripts. These results confirm, but massively extend, the very sparse observations previously obtained from detailed characterization of individual mutants in other organisms.
Nucleic Acids Research | 2007
Séverine Gagnot; Jean-Philippe Tamby; Marie-Laure Martin-Magniette; Frédérique Bitton; Ludivine Taconnat; Sandrine Balzergue; Sébastien Aubourg; Jean-Pierre Renou; Alain Lecharny; Véronique Brunaud
CATdb is a free resource available at http://urgv.evry.inra.fr/CATdb that provides public access to a large collection of transcriptome data for Arabidopsis thaliana produced by a single Complete Arabidopsis Transcriptome Micro Array (CATMA) platform. CATMA probes consist of gene-specific sequence tags (GSTs) of 150–500 bp. The v2 version of CATMA contains 24 576 GST probes representing most of the predicted A. thaliana genes, and 615 probes tiling the chloroplastic and mitochondrial genomes. Data in CATdb are entirely processed with the same standardized protocol, from microarray printing to data analyses. CATdb contains the results of 53 projects including 1724 hybridized samples distributed between 13 different organs, 49 different developmental conditions, 45 mutants and 63 environmental conditions. All the data contained in CATdb can be downloaded from the web site and subsets of data can be sorted out and displayed either by keywords, by experiments, genes or lists of genes up to 100. CATdb gives an easy access to the complete description of experiments with a picture of the experiment design.
Plant Journal | 2008
Moussa Benhamed; Marie-Laure Martin-Magniette; Ludivine Taconnat; Frédérique Bitton; Caroline Servet; Rebecca De Clercq; Björn De Meyer; Caroline Buysschaert; Stephane Rombauts; Raimundo Villarroel; Sébastien Aubourg; Jim Beynon; Rishikesh P. Bhalerao; George Coupland; Wilhelm Gruissem; Frank L.H. Menke; Bernd Weisshaar; Jean-Pierre Renou; Dao-Xiu Zhou; Pierre Hilson
We have assembled approximately 20 000 Arabidopsis thaliana promoter regions, compatible with functional studies that require cloning and with microarray applications. The promoter fragments can be captured as modular entry clones (MultiSite Gateway format) via site-specific recombinational cloning, and transferred into vectors of choice to investigate transcriptional networks. The fragments can also be amplified by PCR and printed on glass arrays. In combination with immunoprecipitation of protein-DNA complexes (ChIP-chip), these arrays enable characterization of binding sites for chromatin-associated proteins or the extent of chromatin modifications at genome scale. The Arabidopsis histone acetyltransferase GCN5 associated with 40% of the tested promoters. At most sites, binding did not depend on the integrity of the GCN5 bromodomain. However, the presence of the bromodomain was necessary for binding to 11% of the promoter regions, and correlated with acetylation of lysine 14 of histone H3 in these promoters. Combined analysis of ChIP-chip and transcriptomic data indicated that binding of GCN5 does not strictly correlate with gene activation. GCN5 has previously been shown to be required for light-regulated gene expression and growth, and we found that GCN5 targets were enriched in early light-responsive genes. Thus, in addition to its transcriptional activation function, GCN5 may play an important role in priming activation of inducible genes under non-induced conditions.
Plant Physiology | 2008
Patricia Mérigout; Maud Lelandais; Frédérique Bitton; Jean-Pierre Renou; Xavier Briand; Christian Meyer; Françoise Daniel-Vedele
Urea is the major nitrogen (N) form supplied as fertilizer in agriculture, but it is also an important N metabolite in plants. Urea transport and assimilation were investigated in Arabidopsis (Arabidopsis thaliana). Uptake studies using 15N-labeled urea demonstrated the capacity of Arabidopsis to absorb urea and that the urea uptake was regulated by the initial N status of the plants. Urea uptake was stimulated by urea but was reduced by the presence of ammonium nitrate in the growth medium. N deficiency in plants did not affect urea uptake. Urea exerted a repressive effect on nitrate influx, whereas urea enhanced ammonium uptake. The use of [15N]urea and [15N]ammonium tracers allowed us to show that urea and ammonium assimilation pathways were similar. Finally, urea uptake was less efficient than nitrate uptake, and urea grown-plants presented signs of N starvation. We also report the first analysis, to our knowledge, of Arabidopsis gene expression profiling in response to urea. Our transcriptomic approach revealed that nitrate and ammonium transporters were transcriptionally regulated by urea as well as key enzymes of the glutamine synthetase-glutamate synthase pathway. AtDUR3, a high-affinity urea transporter in Arabidopsis, was strongly up-regulated by urea. Moreover, our transcriptomic data suggest that other genes are also involved in urea influx.
Plant Physiology | 2008
Ricardo A. Chávez Montes; Philippe Ranocha; Yves Martinez; Zoran Minic; Lise Jouanin; Mélanie Marquis; Luc Saulnier; Lynette M. Fulton; Christopher S. Cobbett; Frédérique Bitton; Jean-Pierre Renou; Alain Jauneau; Deborah Goffner
Although cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional α-l-arabinofuranosidase/β-d-xylosidase (At3g10740) belonging to family 51 glycosyl-hydrolases. ARAF1 was localized in several cell types in the vascular system of roots and stems, including xylem vessels and parenchyma cells surrounding the vessels, the cambium, and the phloem. araf1 T-DNA insertional mutants showed no visible phenotype, whereas transgenic plants that overexpressed ARAF1 exhibited a delay in inflorescence emergence and altered stem architecture. Although global monosaccharide analysis indicated only slight differences in cell wall composition in both mutant and overexpressing lines, immunolocalization experiments using anti-arabinan (LM6) and anti-xylan (LM10) antibodies indicated cell type-specific alterations in cell wall structure. In araf1 mutants, an increase in LM6 signal intensity was observed in the phloem, cambium, and xylem parenchyma in stems and roots, largely coinciding with ARAF1 expression sites. The ectopic overexpression of ARAF1 resulted in an increase in LM10 labeling in the secondary walls of interfascicular fibers and xylem vessels. The combined ARAF1 gene expression and immunolocalization studies suggest that arabinan-containing pectins are potential in vivo substrates of ARAF1 in Arabidopsis.
Plant Physiology | 2008
Ricardo A. Chávez Montes; Philippe Ranocha; Yves Martinez; Zoran Minic; Lise Jouanin; Mélanie Marquis; Luc Saulnier; Lynette M. Fulton; Christopher S. Cobbett; Frédérique Bitton; Jean-Pierre Renou; Alain Jauneau; Deborah Goffner
Although cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional α-l-arabinofuranosidase/β-d-xylosidase (At3g10740) belonging to family 51 glycosyl-hydrolases. ARAF1 was localized in several cell types in the vascular system of roots and stems, including xylem vessels and parenchyma cells surrounding the vessels, the cambium, and the phloem. araf1 T-DNA insertional mutants showed no visible phenotype, whereas transgenic plants that overexpressed ARAF1 exhibited a delay in inflorescence emergence and altered stem architecture. Although global monosaccharide analysis indicated only slight differences in cell wall composition in both mutant and overexpressing lines, immunolocalization experiments using anti-arabinan (LM6) and anti-xylan (LM10) antibodies indicated cell type-specific alterations in cell wall structure. In araf1 mutants, an increase in LM6 signal intensity was observed in the phloem, cambium, and xylem parenchyma in stems and roots, largely coinciding with ARAF1 expression sites. The ectopic overexpression of ARAF1 resulted in an increase in LM10 labeling in the secondary walls of interfascicular fibers and xylem vessels. The combined ARAF1 gene expression and immunolocalization studies suggest that arabinan-containing pectins are potential in vivo substrates of ARAF1 in Arabidopsis.
Plant and Cell Physiology | 2011
R. Sormani; E. Delannoy; S. Lageix; Frédérique Bitton; Elodie Lanet; Julio Sáez-Vásquez; Jean-Marc Deragon; Jean-Pierre Renou; Christophe Robaglia
To study the impact of translational regulation during heavy metal poisoning, Arabidopsis thaliana cell cultures were submitted to sublethal cadmium stress. At the concentration used, cadmium had a minimal impact on the growth of the culture but induced an accumulation of high molecular weight polysomes without de novo production of new ribosomes together with a reduction of protein synthesis. In addition, cadmium stress induces phosphorylation of eukaryotic initiation factor 2α by GCN2 and, in planta, gcn2 mutants are more sensitive to cadmium stress, suggesting a role for this translational regulation mechanism in the response to cadmium stress. Microarray analysis of total and polysomal RNAs in control and cadmium-treated cells reveals a large class of genes for which a variation in total RNA abundance is not linked to a variation in polysomal loading, suggesting that transcription and translation are uncoupled and that these genes are not recruited at the initiation step of translation.
BMC Genomics | 2011
Patricia Faivre Rampant; Isabelle Lesur; Clément Boussardon; Frédérique Bitton; Marie-Laure Martin-Magniette; Catherine Bodénès; Grégoire Le Provost; Hélène Bergès; Sylvia Fluch; Antoine Kremer; Christophe Plomion
BackgroundOne of the key goals of oak genomics research is to identify genes of adaptive significance. This information may help to improve the conservation of adaptive genetic variation and the management of forests to increase their health and productivity. Deep-coverage large-insert genomic libraries are a crucial tool for attaining this objective. We report herein the construction of a BAC library for Quercus robur, its characterization and an analysis of BAC end sequences.ResultsThe Eco RI library generated consisted of 92,160 clones, 7% of which had no insert. Levels of chloroplast and mitochondrial contamination were below 3% and 1%, respectively. Mean clone insert size was estimated at 135 kb. The library represents 12 haploid genome equivalents and, the likelihood of finding a particular oak sequence of interest is greater than 99%. Genome coverage was confirmed by PCR screening of the library with 60 unique genetic loci sampled from the genetic linkage map. In total, about 20,000 high-quality BAC end sequences (BESs) were generated by sequencing 15,000 clones. Roughly 5.88% of the combined BAC end sequence length corresponded to known retroelements while ab initio repeat detection methods identified 41 additional repeats. Collectively, characterized and novel repeats account for roughly 8.94% of the genome. Further analysis of the BESs revealed 1,823 putative genes suggesting at least 29,340 genes in the oak genome. BESs were aligned with the genome sequences of Arabidopsis thaliana, Vitis vinifera and Populus trichocarpa. One putative collinear microsyntenic region encoding an alcohol acyl transferase protein was observed between oak and chromosome 2 of V. vinifera.ConclusionsThis BAC library provides a new resource for genomic studies, including SSR marker development, physical mapping, comparative genomics and genome sequencing. BES analysis provided insight into the structure of the oak genome. These sequences will be used in the assembly of a future genome sequence for oak.
Molecular Plant-microbe Interactions | 2012
Manon Moreau; Alexandre Degrave; Régine Vedel; Frédérique Bitton; Oriane Patrit; Jean-Pierre Renou; Marie-Anne Barny; Mathilde Fagard
Erwinia amylovora causes fire blight in rosaceous plants. In nonhost Arabidopsis thaliana, E. amylovora triggers necrotic symptoms associated with transient bacterial multiplication, suggesting either that A. thaliana lacks a susceptibility factor or that it actively restricts E. amylovora growth. Inhibiting plant protein synthesis at the time of infection led to an increase in necrosis and bacterial multiplication and reduced callose deposition, indicating that A. thaliana requires active protein synthesis to restrict E. amylovora growth. Analysis of the callose synthase-deficient pmr4-1 mutant indicated that lack of callose deposition alone did not lead to increased sensitivity to E. amylovora. Transcriptome analysis revealed that approximately 20% of the genes induced following E. amylovora infection are related to defense and signaling. Analysis of mutants affected in NDR1 and EDS1, two main components of the defense-gene activation observed, revealed that E. amylovora multiplied ten times more in the eds1-2 mutant than in the wild type but not in the ndr1-1 mutant. Analysis of mutants affected in three WRKY transcription factors showing EDS1-dependent activation identified WRKY46 and WRKY54 as positive regulators and WRKY70 as a negative regulator of defense against E. amylovora. Altogether, we show that EDS1 is a positive regulator of nonhost resistance against E. amylovora in A. thaliana and hypothesize that it controls the production of several effective defenses against E. amylovora through the action of WRKY46 and WRKY54, while WRKY70 acts as a negative regulator.
BMC Bioinformatics | 2004
Tristan Mary-Huard; Jean-Jacques Daudin; Stéphane Robin; Frédérique Bitton; Eric Cabannes; Pierre Hilson
BackgroundMicroarray data must be normalized because they suffer from multiple biases. We have identified a source of spatial experimental variability that significantly affects data obtained with Cy3/Cy5 spotted glass arrays. It yields a periodic pattern altering both signal (Cy3/Cy5 ratio) and intensity across the array.ResultsUsing the variogram, a geostatistical tool, we characterized the observed variability, called here the spotting effect because it most probably arises during steps in the array printing procedure.ConclusionsThe spotting effect is not appropriately corrected by current normalization methods, even by those addressing spatial variability. Importantly, the spotting effect may alter differential and clustering analysis.