Céline M. Lévesque
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Céline M. Lévesque.
Molecular Microbiology | 2009
Julie A. Perry; Marcus B. Jones; Scott N. Peterson; Dennis G. Cvitkovitch; Céline M. Lévesque
The induction of genetic competence is a strategy used by bacteria to increase their genetic repertoire under stressful environmental conditions. Recently, Streptococcus pneumoniae has been shown to co‐ordinate the uptake of transforming DNA with fratricide via increased expression of the peptide pheromone responsible for competence induction. Here, we document that environmental stress‐induced expression of the peptide pheromone competence‐stimulating peptide (CSP) in the oral pathogen Streptococcus mutans. We showed that CSP is involved in the stress response and determined the CSP‐induced regulon in S. mutans by microarray analysis. Contrary to pneumococcus, S. mutans responds to increased concentrations of CSP by cell lysis in only a fraction of the population. We have focused on the mechanism of cell lysis and have identified a novel bacteriocin as the ‘death effector’. Most importantly, we showed that this bacteriocin causes cell death via a novel mechanism of action: intracellular action against self. We have also identified the cognate bacteriocin immunity protein, which resides in a separate unlinked genetic locus to allow its differential regulation. The role of the lytic response in S. mutans competence is also discussed. Together, these findings reveal a novel autolytic pathway in S. mutans which may be involved in the dissemination of fitness‐enhancing genes in the oral biofilm.
Journal of Bacteriology | 2009
Prashanth Suntharalingam; M. D. Senadheera; Richard W. Mair; Céline M. Lévesque; Dennis G. Cvitkovitch
Maintaining cell envelope integrity is critical for bacterial survival, including bacteria living in a complex and dynamic environment such as the human oral cavity. Streptococcus mutans, a major etiological agent of dental caries, uses two-component signal transduction systems (TCSTSs) to monitor and respond to various environmental stimuli. Previous studies have shown that the LiaSR TCSTS in S. mutans regulates virulence traits such as acid tolerance and biofilm formation. Although not examined in streptococci, homologs of LiaSR are widely disseminated in Firmicutes and function as part of the cell envelope stress response network. We describe here liaSR and its upstream liaF gene in the cell envelope stress tolerance of S. mutans strain UA159. Transcriptional analysis established liaSR as part of the pentacistronic liaFSR-ppiB-pnpB operon. A survey of cell envelope antimicrobials revealed that mutants deficient in one or all of the liaFSR genes were susceptible to Lipid II cycle interfering antibiotics and to chemicals that perturbed the cell membrane integrity. These compounds induced liaR transcription in a concentration-dependent manner. Notably, under bacitracin stress conditions, the LiaFSR signaling system was shown to induce transcription of several genes involved in membrane protein synthesis, peptidoglycan biosynthesis, envelope chaperone/proteases, and transcriptional regulators. In the absence of an inducer such as bacitracin, LiaF repressed LiaR-regulated expression, whereas supplementing cultures with bacitracin resulted in derepression of liaSR. While LiaF appears to be an integral component of the LiaSR signaling cascade, taken collectively, we report a novel role for LiaFSR in sensing cell envelope stress and preserving envelope integrity in S. mutans.
Journal of Bacteriology | 2008
Helena Sztajer; André Lemme; Ramiro Vilchez; Stefan Schulz; Robert Geffers; Cindy Ying Yin Yip; Céline M. Lévesque; Dennis G. Cvitkovitch; Irene Wagner-Döbler
Autoinducer 2 (AI-2) is the only species-nonspecific autoinducer known in bacteria and is produced by both gram-negative and gram-positive organisms. Consequently, it is proposed to function as a universal quorum-sensing signal for interaction between bacterial species. AI-2 is produced as the by-product of a metabolic transformation carried out by the LuxS enzyme. To separate the metabolic function of the LuxS enzyme from the signaling role of AI-2, we carried out a global transcriptome analysis of a luxS null mutant culture of Streptococcus mutans UA159, an important cariogenic bacterium and a crucial component of the dental plaque biofilm community, in comparison to a luxS null mutant culture supplemented with chemically pure 4,5-dihydroxy-2,3-pentanedione, the precursor of AI-2. The data revealed fundamental changes in gene expression affecting 585 genes (30% of the genome) which could not be restored by the signal molecule AI-2 and are therefore not caused by quorum sensing but by lack of the transformation carried out by the LuxS enzyme in the activated methyl cycle. All functional classes of enzymes were affected, including genes known to be important for biofilm formation, bacteriocin synthesis, competence, and acid tolerance. At the same time, 59 genes were identified whose transcription clearly responded to the addition of AI-2. Some of them were related to protein synthesis, stress, and cell division. Three membrane transport proteins were upregulated which are not related to any of the known AI-2 transporters. Three transcription factors were identified whose transcription was stimulated repeatedly by AI-2 addition during growth. Finally, a global regulatory protein, the delta subunit of the RNA polymerase (rpoE), was induced 147-fold by AI-2, representing the largest differential gene expression observed. The data show that many phenotypes related to the luxS mutation cannot be ascribed to quorum sensing and have identified for the first time regulatory proteins potentially mediating AI-2-based signaling in gram-positive bacteria.
Journal of Bacteriology | 2012
Vincent Leung; Céline M. Lévesque
Within a given microbial population, a small subpopulation known as dormant persister cells exists. This persistence property ensures the survival of the population as a whole in the presence of lethal factors. Although persisters are highly important in antibiotic therapy, the mechanism for persistence is still not thoroughly understood. We show here that the cariogenic organism Streptococcus mutans forms persister cells showing noninherited multidrug tolerance. We demonstrated that the ectopic expression of the type II toxin-antitoxin systems, MazEF and RelBE, caused an increase in the number of persisters. In a search for additional persistence genes, an expression library was constructed, and several clones exhibiting a significant difference in persister formation after prolonged antibiotic treatment were selected. The candidate persister genes include genes involved in transcription/replication, sugar metabolism, cell wall synthesis, and energy metabolism, clearly pointing to redundant pathways for persister formation. We have previously reported that the S. mutans quorum-sensing peptide, CSP pheromone, was a stress-inducible alarmone capable of conveying sophisticated messages in the bacterial population. In this study, we demonstrate the involvement of the intraspecies quorum-sensing system during the formation of stress-induced multidrug-tolerant persisters. To the best of our knowledge, this is the first study reporting the induction of bacterial persistence using a quorum-sensing regulatory system.
Letters in Applied Microbiology | 2007
Céline M. Lévesque; R.W. Mair; J.A. Perry; P.C.Y. Lau; Y.-H. Li; Dennis G. Cvitkovitch
Aim: To assess potential function of each two‐component signal transduction system in the expression of Streptococcus mutans virulence properties.
Infection and Immunity | 2005
Céline M. Lévesque; Elena Voronejskaia; Yi-Chen Cathy Huang; Richard W. Mair; Richard P. Ellen; Dennis G. Cvitkovitch
ABSTRACT Streptococcus mutans is one of the best-known biofilm-forming organisms associated with humans. We investigated the role of the sortase gene (srtA) in monospecies biofilm formation and observed that inactivation of srtA caused a decrease in biofilm formation. Genes encoding three putative sortase-dependent proteins were also found to be up-regulated in biofilms versus planktonic cells and mutations in these genes resulted in reduced biofilm biomass.
Journal of Bacteriology | 2011
Delphine Dufour; Martha Cordova; Dennis G. Cvitkovitch; Céline M. Lévesque
The oral biofilm organism Streptococcus mutans must face numerous environmental stresses to survive in its natural habitat. Under specific stresses, S. mutans expresses the competence-stimulating peptide (CSP) pheromone known to induce autolysis and facilitate the uptake and incorporation of exogenous DNA, a process called DNA transformation. We have previously demonstrated that the CSP-induced CipB bacteriocin (mutacin V) is a major factor involved in both cellular processes. Our objective in this work was to characterize the role of CipB bacteriocin during DNA transformation. Although other bacteriocin mutants were impaired in their ability to acquire DNA under CSP-induced conditions, the ΔcipB mutant was the only mutant showing a sharp decrease in transformation efficiency. The autolysis function of CipB bacteriocin does not participate in the DNA transformation process, as factors released via lysis of a subpopulation of cells did not contribute to the development of genetic competence in the surviving population. Moreover, CipB does not seem to participate in membrane depolarization to assist passage of DNA. Microarray-based expression profiling showed that under CSP-induced conditions, CipB regulated ∼130 genes, among which are the comDE locus and comR and comX genes, encoding critical factors that influence competency development in S. mutans. We also discovered that the CipI protein conferring immunity to CipB-induced autolysis also prevented the transcriptional regulatory activity of CipB. Our data suggest that besides its role in cell lysis, the S. mutans CipB bacteriocin also functions as a peptide regulator for the transcriptional control of the competence regulon.
Journal of Bacteriology | 2013
Delphine Dufour; Céline M. Lévesque
Streptococcus mutans, a member of the human indigenous oral microbiome, produces a quorum-sensing peptide called the competence-stimulating peptide (CSP) pheromone. We previously demonstrated that S. mutans expresses its CSP pheromone under specific stresses and responds to high levels of CSP by inducing cell death in a fraction of the bacterial population. Streptococci lack the classical SOS response, and the induction of the SigX regulon has been proposed to act as a general stress response in Gram-positive bacteria. We show here that inactivation of SigX abolished the CSP-induced cell death phenotype. Among SigX-regulated genes, SMU.836 (now named lytF(Sm)), encoding a conserved streptococcal protein, is a functional peptidoglycan hydrolase involved in CSP-induced cell lysis. We also demonstrated that LytF(Sm) is most likely a self-acting autolysin, since LytF(Sm) produced by attacker cells cannot trigger CSP-induced lysis of LytF(Sm)-deficient target cells present in the same environment. Electron microscopy revealed important morphological changes accompanying autolysis of CSP-induced wild-type cultures that were absent in the LytF(Sm)-deficient mutant. The LytF(Sm) promoter was activated in the physiological context of elevated concentrations of the CSP pheromone under stress conditions, such as exposure to heat, hydrogen peroxide, and acid. In a long-term survival assay, the viability of a mutant deficient in LytF(Sm) autolysin was significantly lower than that observed for the wild-type strain. The results of this study suggest that cell death of S. mutans induced by its quorum-sensing CSP pheromone may represent a kind of altruistic act that provides a way for the species to survive environmental stresses at the expense of some of its cells.
Journal of Bacteriology | 2007
Bryan Korithoski; Céline M. Lévesque; Dennis G. Cvitkovitch
Streptococcus mutans, a normal inhabitant of dental plaque, is considered a primary etiological agent of dental caries. Its main virulence factors are acidogenicity and aciduricity, the abilities to produce acid and to survive and grow at low pH, respectively. Metabolic processes are finely regulated following acid exposure in S. mutans. Proteome analysis of S. mutans demonstrated that lactoylglutathione lyase (LGL) was up-regulated during acid challenge. The LGL enzyme catalyzes the conversion of toxic methylglyoxal, derived from glycolysis, to S-D-lactoylglutathione. Methylglyoxal inhibits the growth of cells in all types of organisms. The current study aimed to investigate the relationship between LGL and aciduricity and acidogenicity in S. mutans. An S. mutans isogenic mutant defective in lgl (LGLKO) was created, and its growth kinetics were characterized. Insertional inactivation of lgl resulted in an acid-sensitive phenotype. However, the glycolytic rate at pH 5.0 was greater for LGLKO than for S. mutans UA159 wild-type cells. LGL was involved in the detoxification of methylglyoxal, illustrated by the absence of enzyme activity in LGLKO and the hypersensitivity of LGLKO to methylglyoxal, compared with UA159 (MIC of 3.9 and 15.6 mM, respectively). Transcriptional analysis of lgl conducted by quantitative real-time PCR revealed that lgl was up-regulated (approximately sevenfold) during the exponential growth phase compared with that in the stationary growth phase. Gene expression studies conducted at low pH demonstrated that lgl was induced during acidic growth (approximately 3.5-fold) and following acid adaptation (approximately 2-fold). This study demonstrates that in S. mutans, LGL functions in the detoxification of methylglyoxal, resulting in increased aciduricity.
Applied and Environmental Microbiology | 2006
Martin Duplessis; Céline M. Lévesque; Sylvain Moineau
ABSTRACT To investigate phage-host interactions in Streptococcus thermophilus, a phage-resistant derivative (SMQ-301R) was obtained by challenging a Tn917 library of phage-sensitive strain S. thermophilus SMQ-301 with virulent phage DT1. Mutants of phages DT1 and MD2 capable of infecting SMQ-301 and SMQ-301R were isolated at a frequency of 10−6. Four host range phage mutants were analyzed further and compared to the two wild-type phages. Altogether, three genes (orf15, orf17, and orf18) contained point mutations leading to amino acid substitutions and were responsible for the expanded host range. These three proteins were also identified in both phages by N-terminal sequencing and/or matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. The results suggest that at least three phage structural proteins may be involved in phage-host interactions in S. thermophilus.