Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Celine Risterucci is active.

Publication


Featured researches published by Celine Risterucci.


Neuropsychopharmacology | 2014

Sub-Anesthetic Ketamine Modulates Intrinsic BOLD Connectivity Within the Hippocampal-Prefrontal Circuit in the Rat

Natalia Gass; Adam J. Schwarz; Alexander Sartorius; Esther Schenker; Celine Risterucci; Michael Spedding; Lei Zheng; Andreas Meyer-Lindenberg; Wolfgang Weber-Fahr

Dysfunctional connectivity within the hippocampal-prefrontal circuit (HC-PFC) is associated with schizophrenia, major depression, and neurodegenerative disorders, and both the hippocampus and prefrontal cortex have dense populations of N-methyl-D-aspartate (NMDA) receptors. Ketamine, a potent NMDA receptor antagonist, is of substantial current interest as a mechanistic model of glutamatergic dysfunction in animal and human studies, a psychotomimetic agent and a rapidly acting antidepressant. In this study, we sought to understand the modulatory effect of acute ketamine administration on functional connectivity in the HC-PFC system of the rat brain using resting-state fMRI. Sprague–Dawley rats in four parallel groups (N=9 per group) received either saline or one of three behaviorally relevant, sub-anesthetic doses of S-ketamine (5, 10, and 25 mg/kg, s.c.), and connectivity changes 15- and 30-min post-injection were studied. The strongest effects were dose- and exposure-dependent increases in functional connectivity within the prefrontal cortex and in anterior–posterior connections between the posterior hippocampus and retrosplenial cortex, and prefrontal regions. The increased prefrontal connectivity is consistent with ketamine-induced increases in HC-PFC electroencephalographic gamma band power, possibly reflecting a psychotomimetic aspect of ketamine’s effect, and is contrary to the data from chronic schizophrenic patients suggesting that ketamine effect does not necessarily parallel the disease pattern but might rather reflect a hyperglutamatergic state. These findings may help to clarify the brain systems underlying different dose-dependent behavioral profiles of ketamine in the rat.


Neuropharmacology | 2008

Effects of aripiprazole/OPC-14597 on motor activity, pharmacological models of psychosis, and brain activity in rats.

Rebecca E. Nordquist; Celine Risterucci; Jean-Luc Moreau; M. von Kienlin; Basil Künnecke; M. Maco; C. Freichel; C. Riemer; Will Spooren

Aripiprazole (OPC-14597) is an antipsychotic with a unique pharmacology as a dopamine D2 receptor partial agonist, which has been demonstrated to reduce symptoms of schizophrenia. To further profile this compound in preclinical models, we examined aripiprazole-induced activity changes as measured by pharmacological magnetic resonance imaging (MRI) and characterized the drug in several rodent models of motor behaviors and of psychosis. Continuous arterial spin labeling MRI measuring blood perfusion (as an indirect measure of activity) reveals that aripiprazole dose-dependently decreased brain activity in the entorhinal piriform cortex, perirhinal cortex, nucleus accumbens shell, and basolateral amygdala. While no deficits were observed in the rotarod test for motor coordination in the simpler (8 RPM) version, in the more challenging condition (16 RPM) doses of 10 and 30mg/kg i.p. produced deficits. Catalepsy was seen only at the highest dose tested (30mg/kg i.p.) and only at the 3 and 6h time points, not at the 1h time point. In pharmacological models of psychosis, 1-30mg/kg aripiprazole i.p. effectively reduced locomotor activity induced by dopamine agonists (amphetamine and apomorphine), NMDA antagonists (MK-801 and phencyclidine (PCP)), and a serotonin agonist (2,5-dimethoxy-4-iodoamphetamine (DOI)). However, aripiprazole reversed prepulse inhibition deficits induced by amphetamine, but not by any of the other agents tested. Aripiprazole alters brain activity in regions relevant to schizophrenia, and furthermore, has a pharmacological profile that differs for the two psychosis models tested and does not match the typical or atypical psychotics. Thus, D2 partial agonists may constitute a new group of antipsychotics.


Psychopharmacology | 2005

Functional magnetic resonance imaging reveals similar brain activity changes in two different animal models of schizophrenia

Celine Risterucci; Karine Jeanneau; Stephanie Schöppenthau; Thomas Bielser; Basil Künnecke; Markus von Kienlin; Jean-Luc Moreau

Rationale and objectivesIn schizophrenia research, most of the functional imaging studies have been performed in psychotic patients, but little is known about brain areas involved in the expression of psychotic-like symptoms in animal models. The objective of this study was to visualize and compare brain activity abnormalities in a neurodevelopmental and a pharmacological animal model of schizophrenia.MethodsBlood perfusion of specific brain areas, taken as indirect measure of brain activity, was investigated in adult rats following either neonatal ventral hippocampal lesion or acute administration of phencyclidine. Quantitative perfusion magnetic resonance imaging was performed on five frontal brain slices using the continuous arterial spin labeling technique. The mean perfusion was calculated in several brain structures, which were identified on anatomical images.ResultsLesioned animals exhibiting deficits in prepulse inhibition of the startle reflex showed a significant blood perfusion increase in the nucleus accumbens, basolateral amygdala, ventral pallidum, entorhinal–piriform cortex, orbital prefrontal cortex, and in the bed nucleus of the stria terminalis, and a decrease of perfusion in the temporal cortex. Similar effects were seen following acute phencyclidine administration in naïve animals.ConclusionOur data point out specific cortical and subcortical brain areas involved in the development of psychotic-like symptoms in two different animal models of schizophrenia. The observed brain activity abnormalities are reminiscent of classical neuroimaging findings described in schizophrenic patients.


Neuroscience | 2013

The low-frequency blood oxygenation level-dependent functional connectivity signature of the hippocampal–prefrontal network in the rat brain

Adam J. Schwarz; Natalia Gass; Alexander Sartorius; Lei Zheng; M. Spedding; E. Schenker; Celine Risterucci; Andreas Meyer-Lindenberg; Wolfgang Weber-Fahr

Interactions between the hippocampus and the prefrontal cortex (PFC) are of major interest in the neurobiology of psychiatric and neurodegenerative disorders and are central to many experimental rodent models. Non-invasive imaging techniques offer a translatable approach to probing this system if homologous features can be identified across species. The objective of the present study was to systematically characterize the rat brain connectivity signature derived from low-frequency resting blood oxygenation level-dependent (BOLD) oscillations associated with and within the hippocampal-prefrontal network, using an array of small seed locations within the relatively large anatomical structures comprising this system. A heterogeneous structure of functional connectivity, both between and within the hippocampal-prefrontal brain structures, was observed. In the hippocampal formation, the posterior (subiculum) region correlated more strongly than the anterior dorsal hippocampus with the PFC. A homologous relationship was found in the human hippocampus, with differential functional connectivity between hippocampal locations proximal to the fornix body relative to locations more distal being localized to the medial prefrontal regions in both species. The orbitofrontal cortex correlated more strongly with sensory cortices and a heterogeneous dependence of functional coupling on seed location was observed along the midline cingulate and retrosplenial cortices. These findings are all convergent with known anatomical connectivity, with stronger BOLD correlations corresponding to known monosynaptic connections. These functional connectivity relationships may provide a useful translatable probe of the hippocampal-prefrontal system for the further study of rodent models of disease and potential treatments, and inform electrode placement in electrophysiology to yield more precise descriptors of the circuits at risk in psychiatric disease.


European Neuropsychopharmacology | 2013

Haloperidol modulates midbrain-prefrontal functional connectivity in the rat brain

Natalia Gass; Adam J. Schwarz; Alexander Sartorius; Dirk Cleppien; Lei Zheng; Esther Schenker; Celine Risterucci; Andreas Meyer-Lindenberg; Wolfgang Weber-Fahr

Dopamine D₂ receptor antagonists effectively reduce positive symptoms in schizophrenia, implicating abnormal dopaminergic neurotransmission as an underlying mechanism of psychosis. Despite the well-established, albeit incomplete, clinical efficacies of D₂ antagonists, no studies have examined their effects on functional interaction between brain regions. We hypothesized that haloperidol, a widely used antipsychotic and D₂ antagonist, would modulate functional connectivity in dopaminergic circuits. Ten male Sprague-Dawley rats received either haloperidol (1 mg/kg, s.c.) or the same volume of saline a week apart. Resting-state functional magnetic resonance imaging data were acquired 20 min after injection. Connectivity analyses were performed using two complementary approaches: correlation analysis between 44 atlas-derived regions of interest, and seed-based connectivity mapping. In the presence of haloperidol, reduced correlation was observed between the substantia nigra and several brain regions, notably the cingulate and prefrontal cortices, posterodorsal hippocampus, ventral pallidum, and motor cortex. Haloperidol induced focal changes in functional connectivity were found to be the most strongly associated with ascending dopamine projections. These included reduced connectivity between the midbrain and the medial prefrontal cortex and hippocampus, possibly relating to its therapeutic action, and decreased coupling between substantia nigra and motor areas, which may reflect dyskinetic effects. These data may help in further characterizing the functional circuits modulated by antipsychotics that could be targeted by innovative drug treatments.


Nature Reviews Drug Discovery | 2017

Defining the brain circuits involved in psychiatric disorders: IMI-NEWMEDS.

Francesc Artigas; Esther Schenker; Pau Celada; Michael Spedding; Laia Lladó-Pelfort; Noemi Jurado; Mercedes Núñez; Noemí Santana; Eva Troyano-Rodriguez; Maurizio Riga; Hanna van den Munkhof; Anna Castañé; Hamdy Shaban; Thérèse M. Jay; Anushree Tripathi; Claude Sebban; Jean Mariani; Philippe Faure; Samir Takkilah; Zoe A. Hughes; Chester J. Siok; Mihaily Hajos; Karsten Wicke; Natalia Gass; Wolfgang Weber-Fahr; Alexander Sartorius; Robert E. Becker; Michael Didriksen; Jesper F. Bastlund; Mark Tricklebank

Despite the vast amount of research on schizophrenia and depression in the past two decades, there have been few innovative drugs to treat these disorders. Precompetitive research collaborations between companies and academic groups can help tackle this innovation deficit, as illustrated by the achievements of the IMI-NEWMEDS consortium.


Neuropsychopharmacology | 2016

Ketamine Suppresses the Ventral Striatal Response to Reward Anticipation: A Cross-Species Translational Neuroimaging Study.

Jennifer Francois; Oliver Grimm; Adam J. Schwarz; Janina I. Schweiger; Leila Haller; Celine Risterucci; Andreas Böhringer; Zhenxiang Zang; Heike Tost; Gary Gilmour; Andreas Meyer-Lindenberg

Convergent evidence implicates regional neural responses to reward anticipation in the pathogenesis of several psychiatric disorders, such as schizophrenia, where blunted ventral striatal responses to positive reward are observed in patients and at-risk populations. In vivo oxygen amperometry measurements in the ventral striatum in awake, behaving rats reveal reward-related tissue oxygen changes that closely parallel blood oxygen level dependent (BOLD) signal changes observed in human functional magnetic resonance imaging (fMRI), suggesting that a cross-species approach targeting this mechanism might be feasible in psychopharmacology. The present study explored modulatory effects of acute, subanaesthetic doses of ketamine—a pharmacological model widely used in psychopharmacological research, both preclinically and clinically—on ventral striatum activity during performance of a reward anticipation task in both species, using fMRI in humans and in vivo oxygen amperometry in rats. In a region-of-interest analysis conducted following a cross-over placebo and ketamine study in human subjects, an attenuated ventral striatal response during reward anticipation was observed following ketamine relative to placebo during performance of a monetary incentive delay task. In rats, a comparable attenuation of ventral striatal signal was found after ketamine challenge, relative to vehicle, in response to a conditioned stimulus that predicted delivery of reward. This study provides the first data in both species demonstrating an attenuating effect of acute ketamine on reward-related ventral striatal (O2) and fMRI signals. These findings may help elucidate a deeper mechanistic understanding of the potential role of ketamine as a model for psychosis, show that cross-species pharmacological experiments targeting reward signaling are feasible, and suggest this phenotype as a promising translational biomarker for the development of novel compounds, assessment of disease status, and treatment efficacy.


European Neuropsychopharmacology | 2012

fMRI fingerprint of unconditioned fear-like behavior in rats exposed to trimethylthiazoline.

Melanie S. Keßler; Sébastien Debilly; Stephanie Schöppenthau; Thomas Bielser; Andreas Bruns; Basil Künnecke; Markus von Kienlin; Joseph G. Wettstein; Jean-Luc Moreau; Celine Risterucci

Unconditioned fear plays an important yet poorly understood role in anxiety disorders, and only few neuroimaging studies have focused on evaluating the underlying neuronal mechanisms. In rodents the predator odor trimethylthiazoline (TMT), a synthetic component of fox feces, is commonly used to induce states of unconditioned fear. In this study, arterial spin labeling-based functional magnetic resonance imaging (fMRI) was applied to detect TMT-induced regional modulations of neuronal activity in Wistar rats. During TMT exposure the rats displayed increased freezing behavior and reduced exploration in the odor-associated area. Neuronal activity was selectively increased in the dorsal periaqueductal gray, superior colliculus and medial thalamus and reduced in the median raphe, locus coeruleus, nucleus accumbens shell, ventral tegmental area, ventral pallidum and entorhinal piriform cortex. This fMRI fingerprint involving distinct neuronal pathways was used to describe a schematic model of fear processing. Key brain areas known to underlie fear and anxiety-related autonomic and behavioral responses as well as centers of motivational processing were identified as being part of this functional circuitry of innate fear. Thus, preclinical fMRI studies based on unconditioned fear methods may provide a valuable translational approach to better characterize etiological and pathological processes underlying anxiety disorders.


NeuroImage | 2017

Statistical power and prediction accuracy in multisite resting-state fMRI connectivity

Christian Dansereau; Yassine Benhajali; Celine Risterucci; Emilio Merlo Pich; Pierre Orban; Douglas L. Arnold; Pierre Bellec

ABSTRACT Connectivity studies using resting‐state functional magnetic resonance imaging are increasingly pooling data acquired at multiple sites. While this may allow investigators to speed up recruitment or increase sample size, multisite studies also potentially introduce systematic biases in connectivity measures across sites. In this work, we measure the inter‐site effect in connectivity and its impact on our ability to detect individual and group differences. Our study was based on real, as opposed to simulated, multisite fMRI datasets collected in N=345 young, healthy subjects across 8 scanning sites with 3 T scanners and heterogeneous scanning protocols, drawn from the 1000 functional connectome project. We first empirically show that typical functional networks were reliably found at the group level in all sites, and that the amplitude of the inter‐site effects was small to moderate, with a Cohens effect size below 0.5 on average across brain connections. We then implemented a series of Monte‐Carlo simulations, based on real data, to evaluate the impact of the multisite effects on detection power in statistical tests comparing two groups (with and without the effect) using a general linear model, as well as on the prediction of group labels with a support‐vector machine. As a reference, we also implemented the same simulations with fMRI data collected at a single site using an identical sample size. Simulations revealed that using data from heterogeneous sites only slightly decreased our ability to detect changes compared to a monosite study with the GLM, and had a greater impact on prediction accuracy. However, the deleterious effect of multisite data pooling tended to decrease as the total sample size increased, to a point where differences between monosite and multisite simulations were small with N=120 subjects. Taken together, our results support the feasibility of multisite studies in rs‐fMRI provided the sample size is large enough. HighlightsSmall to moderate systematic site effects in fMRI connectivity.Small impact of site effects on the detection of group differences for sample size >100.Linear regression of the sites prior to multivariate prediction do not improve prediction accuracy.


Annals of clinical and translational neurology | 2017

Longitudinal characterization of biomarkers for spinal muscular atrophy

Ulrike Bonati; Stefan Holiga; Nicole Hellbach; Celine Risterucci; Tobias Bergauer; Wakana Tang; Patricia Hafner; Alain Thoeni; Oliver Bieri; Irene Gerlach; Anne Marquet; Omar Khwaja; Fabio Sambataro; Alessandro Bertolino; Juergen Dukart; Arne Fischmann; Dirk Fischer; Christian Czech

Recent advances in understanding Spinal Muscular Atrophy (SMA) etiopathogenesis prompted development of potent intervention strategies and raised need for sensitive outcome measures capable of assessing disease progression and response to treatment. Several biomarkers have been proposed; nevertheless, no general consensus has been reached on the most feasible ones. We observed a wide range of measures over 1 year to assess their ability to monitor the disease status and progression.

Collaboration


Dive into the Celine Risterucci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge