Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Gass is active.

Publication


Featured researches published by Natalia Gass.


Neuropsychopharmacology | 2014

Sub-Anesthetic Ketamine Modulates Intrinsic BOLD Connectivity Within the Hippocampal-Prefrontal Circuit in the Rat

Natalia Gass; Adam J. Schwarz; Alexander Sartorius; Esther Schenker; Celine Risterucci; Michael Spedding; Lei Zheng; Andreas Meyer-Lindenberg; Wolfgang Weber-Fahr

Dysfunctional connectivity within the hippocampal-prefrontal circuit (HC-PFC) is associated with schizophrenia, major depression, and neurodegenerative disorders, and both the hippocampus and prefrontal cortex have dense populations of N-methyl-D-aspartate (NMDA) receptors. Ketamine, a potent NMDA receptor antagonist, is of substantial current interest as a mechanistic model of glutamatergic dysfunction in animal and human studies, a psychotomimetic agent and a rapidly acting antidepressant. In this study, we sought to understand the modulatory effect of acute ketamine administration on functional connectivity in the HC-PFC system of the rat brain using resting-state fMRI. Sprague–Dawley rats in four parallel groups (N=9 per group) received either saline or one of three behaviorally relevant, sub-anesthetic doses of S-ketamine (5, 10, and 25 mg/kg, s.c.), and connectivity changes 15- and 30-min post-injection were studied. The strongest effects were dose- and exposure-dependent increases in functional connectivity within the prefrontal cortex and in anterior–posterior connections between the posterior hippocampus and retrosplenial cortex, and prefrontal regions. The increased prefrontal connectivity is consistent with ketamine-induced increases in HC-PFC electroencephalographic gamma band power, possibly reflecting a psychotomimetic aspect of ketamine’s effect, and is contrary to the data from chronic schizophrenic patients suggesting that ketamine effect does not necessarily parallel the disease pattern but might rather reflect a hyperglutamatergic state. These findings may help to clarify the brain systems underlying different dose-dependent behavioral profiles of ketamine in the rat.


Neuroscience | 2013

The low-frequency blood oxygenation level-dependent functional connectivity signature of the hippocampal–prefrontal network in the rat brain

Adam J. Schwarz; Natalia Gass; Alexander Sartorius; Lei Zheng; M. Spedding; E. Schenker; Celine Risterucci; Andreas Meyer-Lindenberg; Wolfgang Weber-Fahr

Interactions between the hippocampus and the prefrontal cortex (PFC) are of major interest in the neurobiology of psychiatric and neurodegenerative disorders and are central to many experimental rodent models. Non-invasive imaging techniques offer a translatable approach to probing this system if homologous features can be identified across species. The objective of the present study was to systematically characterize the rat brain connectivity signature derived from low-frequency resting blood oxygenation level-dependent (BOLD) oscillations associated with and within the hippocampal-prefrontal network, using an array of small seed locations within the relatively large anatomical structures comprising this system. A heterogeneous structure of functional connectivity, both between and within the hippocampal-prefrontal brain structures, was observed. In the hippocampal formation, the posterior (subiculum) region correlated more strongly than the anterior dorsal hippocampus with the PFC. A homologous relationship was found in the human hippocampus, with differential functional connectivity between hippocampal locations proximal to the fornix body relative to locations more distal being localized to the medial prefrontal regions in both species. The orbitofrontal cortex correlated more strongly with sensory cortices and a heterogeneous dependence of functional coupling on seed location was observed along the midline cingulate and retrosplenial cortices. These findings are all convergent with known anatomical connectivity, with stronger BOLD correlations corresponding to known monosynaptic connections. These functional connectivity relationships may provide a useful translatable probe of the hippocampal-prefrontal system for the further study of rodent models of disease and potential treatments, and inform electrode placement in electrophysiology to yield more precise descriptors of the circuits at risk in psychiatric disease.


European Neuropsychopharmacology | 2013

Haloperidol modulates midbrain-prefrontal functional connectivity in the rat brain

Natalia Gass; Adam J. Schwarz; Alexander Sartorius; Dirk Cleppien; Lei Zheng; Esther Schenker; Celine Risterucci; Andreas Meyer-Lindenberg; Wolfgang Weber-Fahr

Dopamine D₂ receptor antagonists effectively reduce positive symptoms in schizophrenia, implicating abnormal dopaminergic neurotransmission as an underlying mechanism of psychosis. Despite the well-established, albeit incomplete, clinical efficacies of D₂ antagonists, no studies have examined their effects on functional interaction between brain regions. We hypothesized that haloperidol, a widely used antipsychotic and D₂ antagonist, would modulate functional connectivity in dopaminergic circuits. Ten male Sprague-Dawley rats received either haloperidol (1 mg/kg, s.c.) or the same volume of saline a week apart. Resting-state functional magnetic resonance imaging data were acquired 20 min after injection. Connectivity analyses were performed using two complementary approaches: correlation analysis between 44 atlas-derived regions of interest, and seed-based connectivity mapping. In the presence of haloperidol, reduced correlation was observed between the substantia nigra and several brain regions, notably the cingulate and prefrontal cortices, posterodorsal hippocampus, ventral pallidum, and motor cortex. Haloperidol induced focal changes in functional connectivity were found to be the most strongly associated with ascending dopamine projections. These included reduced connectivity between the midbrain and the medial prefrontal cortex and hippocampus, possibly relating to its therapeutic action, and decreased coupling between substantia nigra and motor areas, which may reflect dyskinetic effects. These data may help in further characterizing the functional circuits modulated by antipsychotics that could be targeted by innovative drug treatments.


European Neuropsychopharmacology | 2014

Functionally altered neurocircuits in a rat model of treatment-resistant depression show prominent role of the habenula

Natalia Gass; Dirk Cleppien; Lei Zheng; Adam J. Schwarz; Andreas Meyer-Lindenberg; Barbara Vollmayr; Wolfgang Weber-Fahr; Alexander Sartorius

Treatment-resistant depression (TRD) remains a pressing clinical problem. Optimizing treatment requires better definition of the function and specificity of the brain circuits involved. To investigate disease-related alterations of brain function we used a genetic animal model of TRD, congenital learned helplessness (cLH), and functional magnetic resonance imaging as a translational tool. High-resolution regional cerebral blood volume (rCBV) and resting-state functional connectivity measurements were acquired at 9.4T to determine regional dysfunction and interactions that could serve as vulnerability markers for TRD. Effects of cLH on rCBV were determined by statistical parametric mapping using 35 atlas-based regions of interest. Effects of cLH on functional connectivity were assessed by seed region analyses. Significant bilateral rCBV reductions were observed in the lateral habenula, dentate gyrus and subiculum of cLH rats. In contrast, focal bilateral increase in rCBV was observed in the bed nucleus of stria terminalis (BNST), a component of the habenular neurocircuitry. Functional connectivity was primarily enhanced in cLH rats, most notably with respect to serotonergic projections from the dorsal raphe nucleus to the forebrain, within the hippocampal-prefrontal network and between the BNST and lateral frontal regions. Dysregulation of neurocircuitry similar to that observed in depressed patients was detected in cLH rats, supporting the validity of the TRD model and suitability of high-field fMRI as a translational technology to detect and monitor vulnerability markers. Our findings also define neurocircuits that can be studied for TRD treatment in patients, and could be employed for translational research in rodent models.


Translational Psychiatry | 2016

Species-conserved reconfigurations of brain network topology induced by ketamine

Robert Becker; Urs Braun; Adam J. Schwarz; Natalia Gass; J I Schweiger; Wolfgang Weber-Fahr; E Schenker; M Spedding; C Clemm von Hohenberg; C Risterucci; Z Zang; O Grimm; H Tost; Alexander Sartorius; Andreas Meyer-Lindenberg

Species-conserved (intermediate) phenotypes that can be quantified and compared across species offer important advantages for translational research and drug discovery. Here, we investigate the utility of network science methods to assess the pharmacological alterations of the large-scale architecture of brain networks in rats and humans. In a double-blind, placebo-controlled, cross-over study in humans and a placebo-controlled two-group study in rats, we demonstrate that the application of ketamine leads to a topological reconfiguration of large-scale brain networks towards less-integrated and more-segregated information processing in both the species. As these alterations are opposed to those commonly observed in patients suffering from depression, they might indicate systems-level correlates of the antidepressant effect of ketamine.


Neuropsychobiology | 2014

Advantages and Challenges of Small Animal Magnetic Resonance Imaging as a Translational Tool

Carolin Hoyer; Natalia Gass; Wolfgang Weber-Fahr; Alexander Sartorius

The utilization of magnetic resonance imaging (MRI) methods in rodent models of psychiatric disorders provides considerable benefits for the identification of disease-associated brain circuits and metabolic changes. In this review, we discuss advantages and challenges of animal MRI and provide an overview of the major structural (voxel-based morphometry and diffusion tensor imaging) and functional approaches [resting-state functional MRI (rs-fMRI), MR spectroscopy (MRS), regional cerebral blood volume measurement and arterial spin labelling] that are applied in animal MRI research. The review mainly focuses on rs-fMRI and MRS. Finally, we take a look at some recent developments and refinements in the field.


Nature Reviews Drug Discovery | 2017

Defining the brain circuits involved in psychiatric disorders: IMI-NEWMEDS.

Francesc Artigas; Esther Schenker; Pau Celada; Michael Spedding; Laia Lladó-Pelfort; Noemi Jurado; Mercedes Núñez; Noemí Santana; Eva Troyano-Rodriguez; Maurizio Riga; Hanna van den Munkhof; Anna Castañé; Hamdy Shaban; Thérèse M. Jay; Anushree Tripathi; Claude Sebban; Jean Mariani; Philippe Faure; Samir Takkilah; Zoe A. Hughes; Chester J. Siok; Mihaily Hajos; Karsten Wicke; Natalia Gass; Wolfgang Weber-Fahr; Alexander Sartorius; Robert E. Becker; Michael Didriksen; Jesper F. Bastlund; Mark Tricklebank

Despite the vast amount of research on schizophrenia and depression in the past two decades, there have been few innovative drugs to treat these disorders. Precompetitive research collaborations between companies and academic groups can help tackle this innovation deficit, as illustrated by the achievements of the IMI-NEWMEDS consortium.


Neuroscience | 2015

Reduced connectivity and inter-hemispheric symmetry of the sensory system in a rat model of vulnerability to developing depression.

E. Ben-Shimol; Natalia Gass; Barbara Vollmayr; Alexander Sartorius; G. Goelman

Defining the markers corresponding to a high risk of developing depression in humans would have major clinical significance; however, few studies have been conducted since they are not only complex but also require homogeneous groups. This study compared congenital learned helpless (cLH) rats, selectively bred for high stress sensitivity and learned helplessness (LH) behavior, to congenital non-learned helpless (cNLH) rats that were bred for resistance to uncontrollable stress. Naïve cLH rats show some depression-like behavior but full LH behavior need additional stress, making this model ideal for studying vulnerability to depression. Resting-state functional connectivity obtained from seed correlation analysis was calculated for multiple regions that were selected by anatomy AND by a data-driven approach, independently. Significance was determined by t-statistic AND by permutation analysis, independently. A significant reduction in functional connectivity was observed by both analyses in the cLH rats in the sensory, motor, cingulate, infralimbic, accumbens and the raphe nucleus. These reductions corresponded primarily to reduced inter-hemispheric connectivity. The main reduction however was in the sensory system. It is argued that reduced connectivity and inter-hemispheric connectivity of the sensory system reflects an internal convergence state which may precede other depressive symptomatology and therefore could be used as markers for vulnerability to the development of depression.


Translational Psychiatry | 2016

Brain network reorganization differs in response to stress in rats genetically predisposed to depression and stress-resilient rats.

Natalia Gass; Robert Becker; Adam J. Schwarz; Wolfgang Weber-Fahr; C Clemm von Hohenberg; Barbara Vollmayr; Alexander Sartorius

Treatment-resistant depression (TRD) remains a pressing clinical problem. Optimizing treatment requires better definition of the specificity of the involved brain circuits. The rat strain bred for negative cognitive state (NC) represents a genetic animal model of TRD with high face, construct and predictive validity. Vice versa, the positive cognitive state (PC) strain represents a stress-resilient phenotype. Although NC rats show depressive-like behavior, some symptoms such as anhedonia require an external trigger, i.e. a stressful event, which is similar to humans when stressful event induces a depressive episode in genetically predisposed individuals (gene–environment interaction). We aimed to distinguish neurobiological predisposition from the depressogenic pathology at the level of brain-network reorganization. For this purpose, resting-state functional magnetic resonance imaging time series were acquired at 9.4 Tesla scanner in NC (N=11) and PC (N=7) rats before and after stressful event. We used a graph theory analytical approach to calculate the brain-network global and local properties. There was no difference in the global characteristics between the strains. At the local level, the response in the risk strain was characterized with an increased internodal role and reduced local clustering and efficiency of the anterior cingulate cortex (ACC) and prelimbic cortex compared to the stress-resilient strain. We suggest that the increased internodal role of these prefrontal regions could be due to the enhancement of some of their long-range connections, given their connectivity with the amygdala and other default-mode-like network hubs, which could create a bias to attend to negative information characteristic for depression.


Translational Psychiatry | 2018

Lateral habenula perturbation reduces default-mode network connectivity in a rat model of depression

Christian Clemm von Hohenberg; Wolfgang Weber-Fahr; Philipp Lebhardt; Namasivayam Ravi; Urs Braun; Natalia Gass; Robert Becker; Markus Sack; Alejandro Cosa Linan; Martin Fungisai Gerchen; Jonathan Rochus Reinwald; Lars-Lennart Oettl; Andreas Meyer-Lindenberg; Barbara Vollmayr; Wolfgang Kelsch; Alexander Sartorius

Hyperconnectivity of the default-mode network (DMN) is one of the most widely replicated neuroimaging findings in major depressive disorder (MDD). Further, there is growing evidence for a central role of the lateral habenula (LHb) in the pathophysiology of MDD. There is preliminary neuroimaging evidence linking LHb and the DMN, but no causal relationship has been shown to date. We combined optogenetics and functional magnetic resonance imaging (fMRI), to establish a causal relationship, using an animal model of treatment-resistant depression, namely Negative Cognitive State rats. First, an inhibitory light-sensitive ion channel was introduced into the LHb by viral transduction. Subsequently, laser stimulation was performed during fMRI acquisition on a 9.4 Tesla animal scanner. Neural activity and connectivity were assessed, before, during and after laser stimulation. We observed a connectivity decrease in the DMN following laser-induced LHb perturbation. Our data indicate a causal link between LHb downregulation and reduction in DMN connectivity. These findings may advance our mechanistic understanding of LHb inhibition, which had previously been identified as a promising therapeutic principle, especially for treatment-resistant depression.

Collaboration


Dive into the Natalia Gass's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Zheng

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge