Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Celsa A. Spina is active.

Publication


Featured researches published by Celsa A. Spina.


Nature Medicine | 2002

Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections

Victor Appay; P. Rod Dunbar; Margaret F. C. Callan; Paul Klenerman; Geraldine Gillespie; Laura Papagno; Graham S. Ogg; Abigail S. King; Franziska Lechner; Celsa A. Spina; Susan J. Little; Diane V. Havlir; Douglas D. Richman; Norbert H. Gruener; Gerd R. Pape; Anele Waters; Philippa Easterbrook; Mariolina Salio; Vincenzo Cerundolo; Andrew J. McMichael; Sarah Rowland-Jones

The viruses HIV-1, Epstein–Barr virus (EBV), cytomegalovirus (CMV) and hepatitis C virus (HCV) are characterized by the establishment of lifelong infection in the human host, where their replication is thought to be tightly controlled by virus-specific CD8+ T cells. Here we present detailed studies of the differentiation phenotype of these cells, which can be separated into three distinct subsets based on expression of the costimulatory receptors CD28 and CD27. Whereas CD8+ T cells specific for HIV, EBV and HCV exhibit similar characteristics during primary infection, there are significant enrichments at different stages of cellular differentiation in the chronic phase of persistent infection according to the viral specificity, which suggests that distinct memory T-cell populations are established in different virus infections. These findings challenge the current definitions of memory and effector subsets in humans, and suggest that ascribing effector and memory functions to subsets with different differentiation phenotypes is no longer appropriate.


The Lancet | 2005

Depletion of latent HIV-1 infection in vivo: a proof-of-concept study

Ginger Lehrman; Ian B. Hogue; Sarah Palmer; Cheryl Jennings; Celsa A. Spina; Ann Wiegand; Alan Landay; Robert W. Coombs; Douglas D. Richman; John W. Mellors; John M. Coffin; Ronald J. Bosch; David M. Margolis

BACKGROUND Persistent infection in resting CD4+ T cells prevents eradication of HIV-1. Since the chromatin remodeling enzyme histone deacetylase 1 (HDAC1) maintains latency of integrated HIV, we tested the ability of the HDAC inhibitor valproic acid to deplete persistent, latent infection in resting CD4+ T cells. PROCEDURES We did a proof-of-concept study in four volunteers infected with HIV and on highly-active antiretroviral therapy (HAART). After intensifying the effect of HAART with subcutaneous enfuvirtide 90 mug twice daily for 4-6 weeks to prevent the spread of HIV, we added oral valproic acid 500-750 mg twice daily to their treatment regimen for 3 months. We quantified latent infection of resting CD4+ T cells before and after augmented treatment by limiting-dilution culture of resting CD4+ T cells after ex-vivo activation. FINDINGS The frequency of resting cell infection was stable before addition of enfuvirtide and valproic acid, but declined thereafter. This decline was significant in three of four patients (mean reduction 75%, range 68% to >84%). Patients had slight reactions to enfuvirtide at the injection site, but otherwise tolerated treatment well. INTERPRETATION Combination therapy with an HDAC inhibitor and intensified HAART safely accelerates clearance of HIV from resting CD4+ T cells in vivo, suggesting a new and practical approach to eliminate HIV infection in this persistent reservoir. This finding, though not definitive, suggests that new approaches will allow the cure of HIV in the future.


PLOS Biology | 2004

Immune Activation and CD8+ T-Cell Differentiation towards Senescence in HIV-1 Infection

Laura Papagno; Celsa A. Spina; Arnaud Marchant; Mariolina Salio; Nathalie Rufer; Susan J. Little; Tao Dong; Gillian Chesney; Anele Waters; Philippa Easterbrook; P. Rod Dunbar; Dawn Shepherd; Vincenzo Cerundolo; Vincent C. Emery; Paul D. Griffiths; Christopher Conlon; Andrew J. McMichael; Douglas D. Richman; Sarah Rowland-Jones; Victor Appay

Progress in the fight against the HIV/AIDS epidemic is hindered by our failure to elucidate the precise reasons for the onset of immunodeficiency in HIV-1 infection. Increasing evidence suggests that elevated immune activation is associated with poor outcome in HIV-1 pathogenesis. However, the basis of this association remains unclear. Through ex vivo analysis of virus-specific CD8+ T-cells and the use of an in vitro model of naïve CD8+ T-cell priming, we show that the activation level and the differentiation state of T-cells are closely related. Acute HIV-1 infection induces massive activation of CD8+ T-cells, affecting many cell populations, not only those specific for HIV-1, which results in further differentiation of these cells. HIV disease progression correlates with increased proportions of highly differentiated CD8+ T-cells, which exhibit characteristics of replicative senescence and probably indicate a decline in T-cell competence of the infected person. The differentiation of CD8+ and CD4+ T-cells towards a state of replicative senescence is a natural process. It can be driven by excessive levels of immune stimulation. This may be part of the mechanism through which HIV-1-mediated immune activation exhausts the capacity of the immune system.


PLOS ONE | 2013

Highly Precise Measurement of HIV DNA by Droplet Digital PCR

Matthew C. Strain; Steven M. Lada; Tiffany Luong; Steffney Rought; Sara Gianella; Valeri H. Terry; Celsa A. Spina; Christopher H. Woelk; Douglas D. Richman

Deoxyribonucleic acid (DNA) of the human immunodeficiency virus (HIV) provides the most sensitive measurement of residual infection in patients on effective combination antiretroviral therapy (cART). Droplet digital PCR (ddPCR) has recently been shown to provide highly accurate quantification of DNA copy number, but its application to quantification of HIV DNA, or other equally rare targets, has not been reported. This paper demonstrates and analyzes the application of ddPCR to measure the frequency of total HIV DNA (pol copies per million cells), and episomal 2-LTR (long terminal repeat) circles in cells isolated from infected patients. Analysis of over 300 clinical samples, including over 150 clinical samples assayed in triplicate by ddPCR and by real-time PCR (qPCR), demonstrates a significant increase in precision, with an average 5-fold decrease in the coefficient of variation of pol copy numbers and a >20-fold accuracy improvement for 2-LTR circles. Additional benefits of the ddPCR assay over qPCR include absolute quantification without reliance on an external standard and relative insensitivity to mismatches in primer and probe sequences. These features make digital PCR an attractive alternative for measurement of HIV DNA in clinical specimens. The improved sensitivity and precision of measurement of these rare events should facilitate measurements to characterize the latent HIV reservoir and interventions to eradicate it.


The Journal of Infectious Diseases | 2005

Effect of Treatment, during Primary Infection, on Establishment and Clearance of Cellular Reservoirs of HIV-1

Matthew C. Strain; Susan J. Little; Eric S. Daar; Diane V. Havlir; Huldrych F. Günthard; Ruby Y. Lam; Otto A. Daly; Juin Nguyen; Caroline C. Ignacio; Celsa A. Spina; Douglas D. Richman; Joseph K. Wong

Patients in whom virologic suppression is achieved with highly active antiretroviral therapy (HAART) retain long-lived cellular reservoirs of human immunodeficiency virus type 1 (HIV-1); this retention is an obstacle to sustained control of infection. To assess the impact that initiating treatment during primary HIV-1 infection has on this cell population, we analyzed the decay kinetics of HIV-1 DNA and of infectivity associated with cells activated ex vivo in 27 patients who initiated therapy before or <6 months after seroconversion and in whom viremia was suppressed to <50 copies/mL. The clearance rates of cellular reservoirs could not be distinguished by these techniques (median half-life, 20 weeks) during the first year of HAART. The clearance of HIV-1 DNA slowed significantly during the subsequent 3 years of treatment (median half-life, 70 weeks), consistent with heterogeneous cellular reservoirs being present. Total cell-associated infectivity (CAI) after 1 year of treatment was undetectable (<0.07 infectious units/million cells [IUPM]) in most patients initiating treatment during primary infection either before (9/9) or <6 months after (6/8) seroconversion. In contrast, all 17 control patients who initiated HAART during chronic infection retained detectable CAI after 3-6 years of treatment (median reservoir size, 1.1 IUPM; P<.0005). These results suggest that treatment <6 months after seroconversion may facilitate long-term control of cellular reservoirs that maintain HIV-1 infection during treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Heterogeneous clearance rates of long-lived lymphocytes infected with HIV: Intrinsic stability predicts lifelong persistence

Matthew C. Strain; Huldrych F. Günthard; Diane V. Havlir; Caroline C. Ignacio; Davey M. Smith; Andrew J. Leigh-Brown; T. R. Macaranas; Ruby Y. Lam; O. A. Daly; Marek Fischer; Milos Opravil; H. Levine; L. Bacheler; Celsa A. Spina; Douglas D. Richman; Joseph K. Wong

Viral replication and latently infected cellular reservoirs persist in HIV-infected patients achieving undetectable plasma virus levels with potent antiretroviral therapy. We exploited a predictable drug resistance mutation in the HIV reverse transcriptase to label and track cells infected during defined intervals of treatment and to identify cells replenished by ongoing replication. Decay rates of subsets of latently HIV-infected cells paradoxically decreased with time since establishment, reflecting heterogeneous lymphocyte activation and clearance. Residual low-level replication can replenish cellular reservoirs; however, it does not account for prolonged clearance rates in patients without detectable viremia. In patients receiving potent antiretroviral therapy, the latent pool has a heterogeneous and dynamic composition that comprises a progressively increasing proportion of stable lymphocytes. Eradication will not be achieved with complete inhibition of viral replication alone.


PLOS Pathogens | 2013

An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients

Celsa A. Spina; Jenny L. Anderson; Nancie M. Archin; Alberto Bosque; Jonathan Chan; Marylinda Famiglietti; Warner C. Greene; Angela D. M. Kashuba; Sharon R. Lewin; David M. Margolis; Matthew J. Mau; Debbie S. Ruelas; Suha Saleh; Kotaro Shirakawa; Robert F. Siliciano; Akul Singhania; Paula C. Soto; Valeri H. Terry; Eric Verdin; Christopher H. Woelk; Stacey L Wooden; Sifei Xing; Vicente Planelles

The possibility of HIV-1 eradication has been limited by the existence of latently infected cellular reservoirs. Studies to examine control of HIV latency and potential reactivation have been hindered by the small numbers of latently infected cells found in vivo. Major conceptual leaps have been facilitated by the use of latently infected T cell lines and primary cells. However, notable differences exist among cell model systems. Furthermore, screening efforts in specific cell models have identified drug candidates for “anti-latency” therapy, which often fail to reactivate HIV uniformly across different models. Therefore, the activity of a given drug candidate, demonstrated in a particular cellular model, cannot reliably predict its activity in other cell model systems or in infected patient cells, tested ex vivo. This situation represents a critical knowledge gap that adversely affects our ability to identify promising treatment compounds and hinders the advancement of drug testing into relevant animal models and clinical trials. To begin to understand the biological characteristics that are inherent to each HIV-1 latency model, we compared the response properties of five primary T cell models, four J-Lat cell models and those obtained with a viral outgrowth assay using patient-derived infected cells. A panel of thirteen stimuli that are known to reactivate HIV by defined mechanisms of action was selected and tested in parallel in all models. Our results indicate that no single in vitro cell model alone is able to capture accurately the ex vivo response characteristics of latently infected T cells from patients. Most cell models demonstrated that sensitivity to HIV reactivation was skewed toward or against specific drug classes. Protein kinase C agonists and PHA reactivated latent HIV uniformly across models, although drugs in most other classes did not.


Journal of Clinical Investigation | 1997

Preferential replication of HIV-1 in the CD45RO memory cell subset of primary CD4 lymphocytes in vitro.

Celsa A. Spina; Harry E. Prince; Douglas D. Richman

The ability of HIV-1 to establish an infection and replicate to high copy number in CD4 lymphocytes is dependent on both the activation state of the cell and virus-encoded regulatory proteins that modulate viral gene expression. To study these required virus-cell interactions, we have used an in vitro cell model of acute HIV infection of quiescent, primary CD4 lymphocytes and subsequent induction of T cell activation and virus replication by lectin or CD3 receptor cross-linking. Experiments were done to determine if the capacity of HIV to establish infection and complete replication was impacted by the maturational state of the CD4 cell target or the specific signal induction pathway engaged during activation. Primary CD4 cells were FACS-sorted into the major phenotypic subsets representative of memory (CD45RO) and naive (CD45RA) cells. Levels of virus replication were compared between infection with wild-type NL4-3 virus and an isogenic mutant containing a deletion in nef regulatory gene. PHA mitogen stimulation was compared with anti-CD3, with and without anti-CD28 costimulation, for induction of cell proliferation and virus replication. In both infected and uninfected cells, the RA cell subset exhibited significantly greater response to CD3/CD28 stimulation than did the RO cell subset. In contrast, the majority of virus replication occurred consistently in the RO cell subset. Deletion of HIV nef function caused a severe reduction in viral replication, especially in the RA naive cell subset after CD3 induction. PCR analysis of viral DNA formation, during infection of quiescent cells, demonstrated that the observed differences in HIV replication capacity between RO and RA cell subsets were not due to inherent differences in cell susceptibility to infection. Our results indicate that HIV replication is enhanced selectively in CD45RO memory phenotype cells through the probable contribution of specialized cellular factors which are produced during CD3-initiated signal transduction.


PLOS Pathogens | 2014

Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing

Datsen George Wei; Vicki Chiang; Elizabeth Fyne; Mini Balakrishnan; Tiffany Barnes; Michael Graupe; Joseph Hesselgesser; Alivelu Irrinki; Jeffrey P. Murry; George Stepan; Kirsten M. Stray; Angela Tsai; Helen Yu; Jonathan Spindler; Mary Kearney; Celsa A. Spina; Deborah McMahon; Jacob Lalezari; Derek D. Sloan; John W. Mellors; Romas Geleziunas; Tomas Cihlar

Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART.


Journal of Immunology | 2002

Dynamics of T Cell Responses in HIV Infection

Victor Appay; Laura Papagno; Celsa A. Spina; Pokrath Hansasuta; Abigail S. King; Louise Jones; Graham S. Ogg; Susan J. Little; Andrew J. McMichael; Douglas D. Richman; Sarah Rowland-Jones

Cytotoxic CD8+ T cells play a major role in the immune response against viruses. However, the dynamics of CD8+ T cell responses during the course of a human infection are not well understood. Using tetrameric complexes in combination with a range of intracellular and extracellular markers, we present a detailed analysis of the changes in activation and differentiation undergone by Ag-specific CD8+ T cells, in relation to Ag-specific CD4+ T cell responses, in the context of a human infection: HIV-1. During primary HIV-1 infection, the initial population of HIV-specific CD8+ T cells is highly activated and prone to apoptosis. The Ag-specific cells differentiate rapidly from naive to cells at a perforin low intermediate stage of differentiation, later forming a stable pool of resting cells as viral load decreases during chronic infection. These observations have significant implications for our understanding of T cell responses in human viral infections in general and indicate that the definition of effector and memory subsets in humans may need revision.

Collaboration


Dive into the Celsa A. Spina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph K. Wong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Davey M. Smith

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge